Exhibit E – Consultant Reports

Table of Contents

REPORTS

DSA 103	
Hazardous Materials Survey	21-96
Geotechnical Report	

Application Number:
04-122251
DSA File Number:
33-H4

School Name: Orange Grove High School Increment Number: School District: Corona Unified School District Date Created: 2023-10-16 11:05:17

2022 CBC

IMPORTANT: This form is only a summary list of structural tests and some of the special inspections required for the project. Generally, the structural tests and special inspections noted on this form are those that will be performed by the Geotechnical Engineer of Record, Laboratory of Record, or Special Inspector. The actual complete test and inspection program must be performed as detailed on the DSA approved documents. The appendix at the bottom of this form identifies work NOT subject to DSA requirements for special inspection or structural testing. The project inspector is responsible for providing inspection of all facets of construction, including but not limited to, special inspections not listed on this form such as structural wood framing, high-load wood diaphragms, cold-formed steel framing, anchorage of non-structural components, etc., per Title 24, Part 2, Chapter 17A (2022 CBC).

****NOTE:** Undefined section and table references found in this document are from the CBC, or California Building Code.

KEY TO COLUMNS	
1. TYPE	2. PERFORMED BY
Continuous – Indicates that a continuous special inspection is required	GE (Geotechnical Engineer) – Indicates that the special inspection shall be performed by a registered geotechnical engineer or his or her authorized representative.
	LOR (Laboratory of Record) – Indicates that the test or special inspection shall be performed by a testing laboratory accepted in the DSA Laboratory Evaluation and Acceptance (LEA) Program. See CAC Section 4-335.
Periodic – Indicates that a periodic special inspection is required	
	PI (Project Inspector) – Indicates that the special inspection may be performed by a project
	inspector when specifically approved by DSA.
Test – Indicates that a test is required	
	SI (Special Inspection) – Indicates that the special inspection shall be performed by an appropriately qualified/approved special inspector.

Table 1705A.6, Table 1705A.7, Table 1705A.8

Application Number:	School Name:	School District:
04-122251	Orange Grove High School	Corona Unified School District
DSA File Number:	Increment Number:	Date Created:
33-H4		2023-10-16 11:05:17

Geotechnical Reports: Project has a geotechnical report, or CDs indicate soils special inspection is required by GE

S1. GENERAL:			
Test or Special Inspection	Туре	Performed By	Code References and Notes
 a. Verify that: Site has been prepared properly prior to placement of controlled fill and/or excavations for foundations. Foundation excavations are extended to proper depth and have reached proper material. Materials below footings are adequate to achieve the design bearing capacity. 	Periodic	GE*	* By geotechnical engineer or his or her qualified representative. (See Appendix (end of this form) form for exemptions.)

S2. SOIL COMPACTION AND FILL:			
Test or Special Inspection	Туре	Performed By	Code References and Notes
a. Perform classification and testing of fill materials.	Test	LOR*	* Under the supervision of the geotechnical engineer.
b . Verify use of proper materials, densities and inspect lift thicknesses, placement and compaction during placement of fill.	Continuous	GE*	* By geotechnical engineer or his or her qualified representative. (Refer to specific items identified in the Appendix (end of this form) form for exemptions where soils SI and testing may be conducted under the supervision of a geotechnical engineer or LOR's engineering manager. In such cases, the LOR's form DSA 291 shall satisfy the soil SI and test reporting requirements for the exempt items.)
c. Compaction testing.	Test	LOR*	* Under the supervision of the geotechnical engineer. (Refer to specific items identified in the Appendix (end of this form) for exemptions where soils testing may be conducted under the supervision of a geotechnical engineer or LOR's engineering manager. In such cases, the LOR's form DSA 291 shall satisfy the soil test reporting requirements for the exempt items.)

Table 1705A.6, Table 1705A.7, Table 1705A.8

Application Number:	School Name:	School District:
04-122251	Orange Grove High School	Corona Unified School District
DSA File Number: 33-H4	Increment Number:	Date Created: 2023-10-16 11:05:17

S3. DRIVEN DEEP FOUNDATIONS (PILES):			
Test or Special Inspection	Туре	Performed By	Code References and Notes
a. Verify pile materials, sizes and lengths comply with the requirements.	Continuous	GE*	* By geotechnical engineer or his or her qualified representative.
b. Determine capacities of test piles and conduct additional load tests as required.	Test	LOR*	* Under the supervision of the geotechnical engineer.
c. Inspect driving operations and maintain complete and accurate records for each pile.	Continuous	GE*	* By geotechnical engineer or his or her qualified representative.
d. Verify locations of piles and their plumbness, confirm type and size of hammer, record number of blows per foot of penetration, determine required penetrations to achieve design capacity, record tip and butt elevations and record any pile damage.	Continuous	GE*	* By geotechnical engineer or his or her qualified representative.
e. Steel piles.	Provide tests and inspections per STEEL section below.		
f. Concrete piles and concrete filled piles.	Provide tests and inspections per CONCRETE section below.		
g. For specialty piles, perform additional inspections as determined by the registered design professional in responsible charge.	*	*	* As defined on drawings or specifications.

S4. CAST-IN-PLACE DEEP FOUNDATIONS (PIERS):			
Test or Special Inspection	Туре	Performed By	Code References and Note
a. Inspect drilling operations and maintain complete and accurate records for each pier.	Continuous	GE*	* By geotechnical engineer or his or her qualified representative. (See Appendix (end of this form) for exemptions.)

Table 1705A.6, Table 1705A.7, Table 1705A.8

Application Number: 04-122251	School Name: Orange Grove High School		School District: Corona Unified School District
DSA File Number: 33-H4	Increment Number:		Date Created: 2023-10-16 11:05:17
		T	hada Da Ganana an d Nata

	Test or Special Inspection	Туре	Performed By	Code References and Note
	b. Verify pier locations, diameters, plumbness, bell diameters (if applicable), lengths and embedment into bedrock (if applicable); record concrete or grout volumes.	Continuous	GE*	* By geotechnical engineer or his or her qualified representative. (See Appendix (end of this form) for exemptions.)
	c. Confirm adequate end strata bearing capacity.	Continuous	GE*	* By geotechnical engineer or his or her qualified representative. (See Appendix (end of this form) for exemptions.)
	d. Concrete piers.	Provide tests and inspections per CONCRETE section below.		

S5. RETAINING WALLS:				
Test or Special Inspection	Туре	Performed By	Code References and Notes	
a. Placement, compaction and inspection of backfill.	Continuous	GE*	1705A.6.1. * By geotechnical engineer or his or her qualified representative. (See section S2 above).	
b. Placement of soil reinforcement and/or drainage devices.	Continuous	GE*	* By geotechnical engineer or his or her qualified representative.	
c. Segmental retaining walls; inspect placement of units, dowels, connectors, etc.	Continuous	GE*	* By geotechnical engineer or his or her qualified representative. See DSA IR 18-2.	
d. Concrete retaining walls.	Provide tests and inspections per CONCRETE section below.			
e. Masonry retaining walls.	Provide tests a	Provide tests and inspections per MASONRY section below.		

Table 1705A.6, Table 1705A.7, Table 1705A.8

b. Inspection of Soil Improvements

c.

Application Number: School Name: School District: Orange Grove High School **Corona Unified School District** 04-122251 **DSA File Number:** Increment Number: Date Created: 33-H4 2023-10-16 11:05:17 S6. OTHER SOILS: **Test or Special Inspection** Туре Performed By **Code References and Notes** a. Soil Improvements GE* Submit a comprehensive report documenting final soil improvements Test constructed, construction observation and the results of the

Continuous

GE*

confirmation testing and analysis to CGS (California Geological Survey)

* By geotechnical engineer or his or her qualified representative.

* By geotechnical engineer or his or her qualified representative.

for final acceptance.

Table 1705A.3; ACI 318-19 Sections 26.12 & 26.13

Application Number: 04-122251 DSA File Number: 33-H4 School Name: Orange Grove High School Increment Number:

	C1. CAST-IN-PLACE CONCRETE					
	Test or Special Inspection	Туре	Performed By	Code References and Notes		
\checkmark	a. Verify use of required design mix.	Periodic	SI	Table 1705A.3 Item 5, 1910A.1.		
V	b. Identifiy, sample, and test reinforcing steel.	Test	LOR	1910A.2 ; ACI 318-19 Ch.20 and Section 26.6.1.2; DSA IR 17-10. (See Appendix (end of this form) for exemptions.)		
V	c. During concrete placement, fabricate specimens for strength tests, perform slump and air content tests, and determine the temperature of the concrete.	Test	LOR	Table 1705A.3 Item 6; ACI 318-19 Sections 26.5 & 26.12.		
\checkmark	d. Test concrete (f'c).	Test	LOR	1905A.1.17 ; ACI 318-19 Section 26.12.		
V	e. Batch plant inspection: Eliminated	See Notes	SI	Default of 'Continuous' per 1705A.3.3 . If approved by DSA, batch plant inspection may be reduced to 'Periodic' subject to requirements in Section 1705A.3.3.1 , or eliminated per 1705A.3.3.2 . See IR 17-13. (See Appendix (end of this form) for exemptions.)		
	f. Welding of reinforcing steel.	Provide spec	Provide special inspection per STEEL, Category S/A4(d) & (e) and/or S/A5(g) & (h) below.			

C2. PRESTRESSED / POST-TENSIONED CONCRETE (IN ADDITION TO SECTION C1):					
Test or Special Inspection Type Performed By Code References and Notes					
a . Sample and test prestressing tendons and anchorages.	Test	LOR	1705A.3.4, 1910A.3		
b. Inspect placement of prestressing tendons.	Periodic	SI	1705A.3.4, Table 1705A.3 Items 1 & 9.		

Table 1705A.3; ACI 318-19 Sections 26.12 & 26.13

Application Number:School Name:04-122251Orange Grove High SchoolDSA File Number:Increment Number:33-H4

Test or Special Inspection	Туре	Performed By	Code References and Notes
c. Verify in-situ concrete strength prior to stressing of post-tensioning tendons.	Periodic	SI	Table 1705A.3 Item 13. Special inspector to verify specified concrete strength test prior to stressing.
d. Inspect application of post-tensioning or prestressing forces and grouting of bonded prestressing tendons.	Continuous	SI	1705A.3.4, Table 1705A.3 Item 9; ACI 318-14 Section 26.13

C3. PRECAST CONCRETE (IN ADDITION TO SECTION C1):				
Test or Special Inspection	Туре	Performed By	Code References and Notes	
a. Inspect fabrication of precast concrete members.	Continuous	SI	ACI 318-19 Section 26.13.	
b. Inspect erection of precast concrete members.	Periodic	SI*	Table 1705A.3 Item 10. * May be performed by PI when specifically approved by DSA.	
 c. For precast concrete diaphragm connections or reinforcement at joints classified as moderate or high deformability elements (MDE or HDE) in structures assigned to Seismic Design Category D, E or F, inspect such connections and reinforcement in the field for: 1. Installation of the embedded parts 2. Completion of the continuity of reinforcement across joints. 3. Completion of connections in the field. 	Continuous	SI	Table 1705A.3; ACI 318-19 Section 26.13.1.3; ACI 550.5	
d. Inspect installation tolerances of precast concrete diaphragm connections for compliance with ACI 550.5.	Periodic	SI	Table 1705A.3; ACI 318-19 Section 26.13.1.3; ACI 550.5	

Table 1705A.3; ACI 318-19 Sections 26.12 & 26.13

Application Number: 04-122251 DSA File Number: 33-H4 School Name: Orange Grove High School Increment Number:

C4. SHOTCRETE (IN ADDITION TO SECTION C1):				
Test or Special Inspection	Туре	Performed By	Code References and Notes	
a. Inspect shotcrete placement for proper application techniques.	Continuous	SI	1705A.3.9, Table 1705A.3 Item 7, 1908A.1, 1908A.2, 1908A.3. See ACI 506.2-13 Section 3.4, ACI 506R-16.	
b. Sample and test shotcrete (f ^c).	Test	LOR	1908A.2, 1705A.3.9	

	C5. POST-INSTALLED ANCHORS:				
	Test or Special Inspection	Туре	Performed By	Code References and Notes	
	a . Inspect installation of post-installed anchors	See Notes	SI*	1617A.1.19, Table 1705A.3 Item 4a (Continuous) & 4b (Periodic) , 1705A.3.8 (See Appendix (end of this form) for exemptions). ACI 318-14 Sections 17.8 & 26.13. * May be performed by the project inspector when specifically approved by DSA.	
1	b. Test post-installed anchors.	Test	LOR	1910A.5. (See Appendix (end of this form) for exemptions.)	

C6. OTHER CONCRETE:				
Test or Special Inspection	Туре	Performed By	Code References and Notes	
а.				

1705A.2.1, Table 1705A.2.1; AISC 303-16, AISC 341-16, AISC 358-16, AISC 360-16; AISI S100-20; RCSC 2014; AWS D1.1, AWS D1.2, AWS D1.3, AWS D1.4, AWS D1.8

Application Number:

04-122251 DSA File Number:

33-H4

School Name: Orange Grove High School Increment Number:

	S/A1. STRUCTURAL STEEL, COLD-FORMED STEEL AND ALUMINUM USED FOR STRUCTURAL PURPOSES					
	Test or Special Inspection	Туре	Performed By	Code References and Notes		
	 a. Verify identification of all materials and: Mill certificates indicate material properties that comply with requirements. Material sizes, types and grades comply with requirements. 	Periodic	*	Table 1705A.2.1 Item 3a3c. 2202A.1; AISI S100-20 Section A3.1 &A3.2, AISI S240-20 Section A3 & A5, AISI S220-20 Sections A4 & A6. * Byspecial inspector or qualified technician when performed off-site.		
V	b. Test unidentified materials	Test	LOR	2202A.1.		
	c. Examine seam welds of HSS shapes	Periodic	SI	DSA IR 17-3.		
✓	d . Verify and document steel fabrication per DSA- approved construction documents.	Periodic	SI	Not applicable to cold-formed steel light-frame construction, except for trusses (1705A.2.4).		
	e. Buckling restrained braces.	Test	LOR	Testing and special inspections in accordance with IR 22-4.		

S/A2. HIGH-STRENGTH BOLTS:				
Test or Special Inspection	Туре	Performed By	Code References and Notes	
a. Verify identification markings and manufacturer's certificates of compliance conform to ASTM standards specified in the DSA-approved documents.	Periodic	SI	Table 1705A.2.1 Items 1a & 1b, 2202A.1; AISC 360-16 Section A3.3, J3.1, and N3.2; RCSC 2014 Section 1.5 & 2.1; DSA IR 17-8 & DSA IR 17-9.	
b. Test high-strength bolts, nuts and washers.	Test	LOR	Table 1705A.2.1 Item 1c, 2213A.1; RCSC 2014 Section 7.2; DSA IR 17-8.	
c. Bearing-type ("snug tight") connections.	Periodic	SI	Table 1705A.2.1 Item 2a, 1705A.2.6, 2204A.2; AISC 360-16 J3.1, J3.2, M2.5 & N5.6; RCSC 2014 Section 9.1; DSA IR 17-9.	
d. Pretensioned and slip-critical connections.	*	SI	Table 1705A.2.1 Items 2b & 2c, 1705A.2.6, 2204A.2; AISC 360-16 J3.1, J3.2, M2.5 & N5.6; RCSC 2014 Sections 9.2 & 9.3; DSA IR 17-9. *"Continuous" or "Periodic" depends on the tightening method used.	

1705A.2.1, Table 1705A.2.1; AISC 303-16, AISC 341-16, AISC 358-16, AISC 360-16; AISI S100-20; RCSC 2014; AWS D1.1, AWS D1.2, AWS D1.3, AWS D1.4, AWS D1.8

Application Number:	School Name:
04-122251	Orange Grove High School
DSA File Number:	Increment Number:
33-H4	

	S/A3. WELDING:				
	Test or Special Inspection	Туре	Performed By	Code References and Notes	
	a. Verify weld filler material identification markings per AWS designation listed on the DSA-approved documents and the WPS.	Periodic	SI	1705A.2.5, Table 1705A.2.1 Items 4 & 5 ; AWS D1.1 and AWS D1.8 for structural steel; AWS D1.2 for Aluminum; AWS D1.3 for cold-formed steel; AWS D1.4 for reinforcing steel; DSA IR 17-3.	
V	b. Verify weld filler material manufacturer's certificate of compliance.	Periodic	SI	DSA IR 17-3.	
\checkmark	c. Verify WPS, welder qualifications and equipment.	Periodic	SI	DSA IR 17-3.	

S/A4. SHOP WELDING (IN ADDITION TO SECTION S/A3):				
Test or Special Inspection	Туре	Performed By	Code References and Notes	
a. Inspect groove welds, multi-pass fillet welds, single pass fillet welds > 5/16", plug and slot welds.	Continuous	SI	Table 1705A.2.1 Items 5a.1 4; AISC 360-16 (and AISC 341-16 as applicable); DSA IR 17-3.	
b. Inspect single-pass fillet welds $\leq 5/16^{"}$, floor and roof deck welds.	Periodic	SI	1705A.2.2, Table 1705A.2.1 Items 5a.5 & 5a.6; AISC 360-16 (and AISC 341-16 as applicable); DSA IR 17-3.	
c. Inspect welding of stairs and railing systems.	Periodic	SI	1705A.2.1 ; AISC 360-16 (and AISC 341-16 as applicable); AWS D1.1 & D1.3; DSA IR 17-3.	
d. Verification of reinforcing steel weldability other than ASTM A706.	Periodic	SI	1705A.3.1 ; AWS D1.4; DSA IR 17-3. Verify carbon equivalent reported on mill certificates.	
e. Inspect welding of reinforcing steel.	Continuous	SI	Table 1705A.2.1 Item 5b, 1705A.3.1, Table 1705A.3 Item 2, 1903A.8; AWS D1.4; DSA IR 17-3.	

1705A.2.1, Table 1705A.2.1; AISC 303-16, AISC 341-16, AISC 358-16, AISC 360-16; AISI S100-20; RCSC 2014; AWS D1.1, AWS D1.2, AWS D1.3, AWS D1.4, AWS D1.8

Application Number: 04-122251 DSA File Number: 33-H4 School Name: Orange Grove High School Increment Number:

	Test or Special Inspection	Туре	Performed By	Code References and Notes
	S/A5. FIELD WELDING (IN ADDITION TO SECTION S/A3):			
	Test or Special Inspection	Туре	Performed By	Code References and Notes
	a. Inspect groove welds, multi-pass fillet welds, single pass fillet welds > 5/16", plug and slot welds.	Continuous	SI	Table 1705A.2.1 Items 5a.1 4; AISC 360-16 (AISC 341-16 as applicable); DSA IR 17-3.
V	b. Inspect single-pass fillet welds $\leq 5/16''$.	Periodic	SI	Table 1705A.2.1 Item 5a.5; AISC 360-16 (AISC 341-16 as applicable); DSA IR 17-3.
	c. Inspect end-welded studs (ASTM A-108) installation (including bend test).	Periodic	SI	2213A.2 ; AISC 360-16 (AISC 341-16 as applicable); AWS D1.1; DSA IR 17-3.
	d. Inspect floor and roof deck welds.	Periodic	SI	1705A.2.2, Table 1705A.2.1 Item 5a.6 ; AISC 360-16 (AISC 341-16 as applicable); AWS D1.3; DSA IR 17-3.
	e. Inspect welding of structural cold-formed steel.	Periodic	SI*	1705A.2.5; AWS D1.3; DSA IR 17-3. The quality control provisions of AISI S240-20 Chapter D shall also apply. * May be performed by the project inspector when specifically approved by DSA.
	f. Inspect welding of stairs and railing systems.	Periodic	SI*	1705A.2.1; AISC 360-16 (AISC 341-16 as applicable); AWS D1.1 & D1.3; DSA IR 17-3. * May be performed by the project inspector when specifically approved by DSA.
	g. Verification of reinforcing steel weldability.	Periodic	SI	1705A.3.1 ; AWS D1.4; DSA IR 17-3. Verify carbon equivalent reported on mill certificates.
	h. Inspect welding of reinforcing steel.	Continuous	SI	Table 1705A.2.1 Item 5b, 1705A.3.1, Table 1705A.3 Item 2, 1903A.8; AWS D1.4; DSA IR 17-3.

1705A.2.1, Table 1705A.2.1; AISC 303-16, AISC 341-16, AISC 358-16, AISC 360-16; AISI S100-20; RCSC 2014; AWS D1.1, AWS D1.2, AWS D1.3, AWS D1.4, AWS D1.8

Application Number: 04-122251 DSA File Number: 33-H4 School Name: Orange Grove High School Increment Number:

Test or Special Inspection	Туре	Performed By	Code References and Notes
S/A6. NONDESTRUCTIVE TESTING:	I		
Test or Special Inspection	Туре	Performed By	Code References and Notes
a. Ultrasonic	Test	LOR	1705A.2.1, 1705A.2.5; AISC 341-16 J6.2, AISC 360-16 N5.5; AWS D1.1, AWS D1.8; DSA IR 17-2.
b . Magnetic Particle	Test	LOR	1705A.2.1, 1705A.2.5; AISC 341-16 J6.2, AISC 360-16 N5.5; AWS D1.1, AWS D1.8; DSA IR 17-2.
c.	Test	LOR	

S/A7. STEEL JOISTS AND TRUSSES:			
Test or Special Inspection	Туре	Performed By	Code References and Notes
a. Verify size, type and grade for all chord and web members as well as connectors and weld filler material; verify joist profile, dimensions and camber (if applicable); verify all weld locations, lengths and profiles; mark or tag each joist.	Continuous	SI	1705A.2.3, Table 1705A.2.3; AWS D1.1; DSA IR 22-3 for steel joists only. 1705A.2.4 ; AWS D1.3 for cold-formed steel trusses.

1705A.2.1, Table 1705A.2.1; AISC 303-16, AISC 341-16, AISC 358-16, AISC 360-16; AISI S100-20; RCSC 2014; AWS D1.1, AWS D1.2, AWS D1.3, AWS D1.4, AWS D1.8

Application Number:
04-122251
DSA File Number:
33-H4

School Name: Orange Grove High School Increment Number:

Test or Special Inspection	Туре	Performed By	Code References and Notes		
S/A8. SPRAYED FIRE-RESISTANT MATERIALS:					
Test or Special Inspection	Туре	Performed By	Code References and Notes		
a. Examine structural steel surface conditions, inspect application, take samples, measure thickness and verify compliance of all aspects of application with DSA-approved documents.	Periodic	SI	1705A.15, 1705A.1, 1705A.2, 1705A.3, 1705A.4.		
b. Test density.	Test	LOR	1705A.15.1, 1705A.15.5, ASTM E736		
c. Bond strength adhesion/cohesion.	Test	LOR	1705A.15.1, 1705A.15.4, ASTM E605		

	S/A9. ANCHOR BOLTS AND ANCHOR RODS:				
	Test or Special Inspection	Туре	Performed By	Code References and Notes	
7	a. Anchor Bolts and Anchor Rods	Test	LOR	Sample and test anchor bolts and anchor rods not readily identifiable per procedures noted in DSA IR 17-11.	
	b. Threaded rod not used for foundation anchorage.	Test	LOR	Sample and test threaded rods not readily identifiable per procedures noted in DSA IR 17-11.	

S/A10. STORAGE RACK SYSTEMS:				
Test or Special Inspection	Туре	Performed By	Code References and Notes	
a. Materials used, to verify compliance with one or more of the material test reports in accordance with the approved construction documents.	Periodic	SI	Table 1705A.13.7	
b. Fabricated storage rack elements.	Periodic	SI	1704A.2.5; Table 1705A.13.7	

1705A.2.1, Table 1705A.2.1; AISC 303-16, AISC 341-16, AISC 358-16, AISC 360-16; AISI S100-20; RCSC 2014; AWS D1.1, AWS D1.2, AWS D1.3, AWS D1.4, AWS D1.8

Application Number: 04-122251 DSA File Number: 33-H4 School Name: Orange Grove High School Increment Number:

	Test or Special Inspection	Туре	Performed By	Code References and Notes
	c. Storage rack anchorage installation.	Periodic	SI	ANSI/MH16.1 Section 7.3.2; Table 1705A.13.7
	d . Completed storage rack system to indicate compliance with the approved construction documents.	Periodic	SI*	Table 1705A.13.7; * May be preformed by the project inspector when specifically approved by DSA.

S/A11. Other Steel			
Test or Special Inspection	Туре	Performed By	Code References and Notes
а.			

Appendix: Work Exempt from DSA Requirements for Structural Tests / Special Inspections

Application Number:	School Name:	School District:
04-122251	Orange Grove High School	Corona Unified School District
DSA File Number:	Increment Number:	Date Created:
33-H4		2023-10-16 11:05:17

Exempt items given in DSA IR A-22 or the 2019 CBC (including DSA amendments) and those items identified below with a check mark by the design professional are NOT subject to DSA requirements for the structural tests / special inspections noted. Items marked as exempt shall be identified on the approved construction documents. The project inspector shall verify all construction complies with the approved construction documents.

SOILS:
1. Deep foundations acting as a cantilever footing with a design based on minimum allowable pressures per CBC Table 1806A.2 and without a geotechnical report for the following cases: A) free standing sign or scoreboard, B) cell or antenna towers and poles less than 35'-0" tall (e.g., lighting poles, flag poles, poles supporting open mesh fences, etc.), C) single-story structure with dead load less than 5 psf (e.g., open fabric shade structure), or D) covered walkway structure with an apex height less than 10'-0" above adjacent grade.
2. Shallow foundations, etc. are exempt from special inspections and testing by a Geotechnical Engineer for the following cases: A) buildings without a geotechnical report and meeting the exception item #1 criteria in CBC Section 1803A.2 supported by native soil (any excavation depth) or fill soil (not exceeding 12" depth per CBC Section 1804A.6), B) soil scarification/recompaction not exceeding 12" depth, C) native or fill soil supporting exterior non-structural flatwork (e.g., sidewalks, site concrete ramps, site stairs, parking lots, driveways, etc.), D) unpaved landscaping and playground areas, or E) utility trench backfill.

CONCRETE/MASONRY:
1. Post-installed anchors for the following: A) exempt non-structural components (e.g., mechanical, electrical, plumbing equipment - see item 7 for "Welding" in the Appendix below) given in CBC Section 1617A.1.18 (which replaces ASCE 7-16, Section 13.1.4) or B) interior nonstructural wall partitions meeting criteria listed in exempt item 3 for "Welding" in the Appendix below
2. Concrete batch plant inspection is not required for items given in CBC Section 1705A.3.3.2 subject to the requirements and limitations in that section.
3. Non-bearing non-shear masonry walls may be exempt from certain DSA masonry testing and special inspection items as allowed per DSA IR 21-1. Refer to construction documents for specific exemptions accordingly for each applicable wall condition.
4. Epoxy shear dowels in site flatwork and/or other non-structural concrete.

Appendix: Work Exempt from DSA Requirements for Structural Tests / Special Inspections

Application Number: 04-122251 DSA File Number: 33-H4

CONCRETE/MASONRY:

School Name: Orange Grove High School Increment Number:

5. Testing of reinforcing bars is not required for items given in CBC Section 1910A.2 subject to the requirements and limitations in that section.
WELDING:
1. Solid-clad and open-mesh fences, gates with maximum leaf span of 10', and gates with a maximum rolling section of 10' all having an apex height less than 8'-0" above lowest adjacent grade. When located above circulation or occupied space below, these gates/fences are not located within 1.5x gate/fence height (max 8'-0") to the edge of floor or roof.
2. Handrails, guardrails, and modular or relocatable ramps associated with walking surfaces less than 30" above adjacent grade (excluding post base connections per the 'Exception' language in Section 1705A.2.1); fillet welds shall not be ground flush.
3. Non-structural interior cold-formed steel framing spanning less than 15'-0", such as in interior partitions, interior soffits, etc. supporting only self weight and light-weight finishes or adhered tile, masonry, stone, or terra cotta veneer no more than 5/8" thickness and apex less than 20'-0" in height and not over an exit way. Maximum tributary load to a member shall not exceed the equivalent of that occurring from a 10'x10' opening in a 15' tall wall for a header or king stud.
4. Manufactured support frames and curbs using hot rolled or cold-formed steel (i.e., light gauge) for mechanical, electrical, or plumbing equipment weighing less than 2000# (equipment only) (connections of such frames to superstructure elements using welding will require special inspection as noted in selected item(s) for S/A3, S/A4 and/or S/A5 of listing above).
5. Manufactured components (e.g., Tolco, B-Line, Afcon, etc.) for mechanical, electrical, or plumbing hanger support and bracing (connections of such components to superstructure elements using welding will require special inspection as noted in selected item(s) for Sections S/A3, S/A4 and/or S/A5 of listing above).
6. TV Brackets, projector mounts with a valid listing (see DSA IR A-5) and recreational equipment (e.g., playground structures, basketball backstops, etc.) (connections of such elements to superstructure elements using welding will require special inspection as noted in selected item(s) for sections S/A3, S/A4 and/or S/A5 located in the Steel/Aluminum category of listing above).
7. Any support for exempt non-structural components given in CBC Section 1617A.1.18 (which replaces ASCE 7-16, Section 13.1.4) meeting the following: A) when supported on a floor/roof, <400# and resulting composite center of mass (including component's center of mass) \leq 4' above supporting floor/roof, B) when hung from a wall or roof/floor, <20# for discrete units or <5 plf for distributed systems.

Application Number:		
04-122251		
DSA File Number:		
33-H4		

School Name: Orange Grove High School Increment Number: School District: Corona Unified School District Date Created: 2023-10-16 11:05:17

Name of Architect or Engineer in general responsible charge:				
Yong Yoo				
Name of Structural Engineer (When structural design has been deleg	ated):			
Leslie Tso				
Signature of Architect or Structural Engineer:	Date: 10/16/23			

Note: To facilitate DSA electronic mark-ups and identification stamp application, DSA recommends against using secured electronic or digital signatures.

DSA STAMP
IDENTIFICATION STAMP DIV. OF THE STATE ARCHITECT
APP: 04-122251 INC:
REVIEWED FOR SS I FLS I ACS I
DATE: <u>10/24/2023</u>

DSA 103-22: LIST OF REQUIRED VERIFIED REPORTS, CBC 2022

Application Number: 04-122251 DSA File Number: 33-H4 School Name: Orange Grove High School Increment Number: School District: Corona Unified School District Date Created: 2023-10-16 11:05:17

1. Soils Testing and Inspection: Geotechnical Verified Report Form DSA 293

2. Structural Testing and Inspection: Laboratory Verified Report Form DSA 291

3. Concrete Batch Plant Inspection: Laboratory Verified Report Form DSA 291

4. Shop Welding Inspection: Laboratory Verified Report Form DSA 291, or, for independently contracting SI, Special Inspection Verified Report Form DSA 292

5. Field Welding Inspection: Laboratory Verified Report Form DSA 291, or, for independently contracting SI, Special Inspection Verified Report Form DSA 292

January 30, 2023

Ms. Jacquelyn Roberts Construction Director – Facilities Division Corona-Norco Unified School District 2820 Clark Avenue Norco, California 92860

Subject: ASBESTOS & LEAD-BASED PAINT SURVEY REPORT Portion of Auburndale Middle School 1255 River Road Corona, California 92880 Converse Project No. 22-16-164-01

Ms. Roberts:

Provided is our report of the *Asbestos & Lead-Based Paint (LBP) Survey* completed on December 21 and 22, 2022, for the referenced site. Our work, which was a non-destructive survey, was completed in general accordance with our proposal dated November 11, 2022 and the Scope of Services revisions received on December 13, 2022. The revised Scope of Services that was completed during this survey included the following:

- Survey of eight (8) portable buildings and
- Asphalt and concrete in various areas.

The Scope of Services was completed by, or under the supervision, of the following Converse employees:

Name	Asbestos Cert. No.	CDPH Cert. No.	Project Responsibility	Contact Number
Norman Eke (NSE)	CAC #96-2093		Contract Management	626-930-1260
Rodney Stansfield (RDS)	CAC #97-2309	Inspector/Assessor #4397	ASB and LBP Inspection & Sampling Report Generation	714-333-8222
Laura Tanaka (LAT)	CAC #11-4708	Inspector/Assessor #7879	Project Management Report QA/QC	626-807-3422

All bulk asbestos samples were submitted and analyzed by following the laboratory:

MAILING ADDRESS: 717 South Myrtle Avenue, Monrovia, CA 91016

 LA Testing 5431 Industrial Drive, Huntington Beach, California 92649 714-828-4999 NVLAP #101384-0

Copies of applicable staff and laboratory certifications have been attached to this letter.

ASBESTOS

Prior to sampling, Converse visually surveyed the proposed project area (as noted in CNUSD Addendum No.1 to Limited RFP) for suspect asbestos-containing materials (ACMs) and homogeneous areas (areas that have uniform color, texture, and appearance). Suspect materials were divided into friable (crushable to dust) and non-friable materials, and placed in one of the following Environmental Protection Agency (EPA) categories:

- Surfacing Materials (sprayed or troweled-on materials)
- Thermal Systems Insulations (materials generally applied to various mechanical systems)
- Miscellaneous Materials (any materials which do not fit in the above categories)

The strategy for the collection of asbestos samples was in general accordance with the EPA guidance document *"Asbestos in Buildings: Simplified Sampling Scheme for Friable Surfacing Materials"*, EPA 560/5-85-030a, October 1985, 40 CFR 763 (AHERA); *National Exposure Standards for Hazardous Air Pollutants (NESHAP)*, 40 CFR Part 61; and South Coast Air Quality Management District, *Rule 1403, Asbestos Emissions From Demolition/Renovation Activities*, Amended October 5, 2007.

The bulk samples were analyzed by Polarized Light Microscopy (PLM) in accordance with EPA Test Method 600/R-93/116. A summary of the types of suspect materials sampled along with the analytical results is presented in the following table.

Table 1 - Ouspeet materials bampled & Analytical Results					
Sample Number	Suspect Material	% Asb Detected	Fri or NF Material	I or D Condition	Comments
1227-01 – 1227-03	Plasticized roof felt	None Detected	NF	I	Roof of Building B8, over Styrofoam and wood base.
1227-04 – 1227-06	Roof core (includes silver paint)	None Detected	NF	I	Roof of Building B1/B3, over a wood base.
1227-07 – 1227-09	Penetration mastic (includes silver paint)	None Detected	NF	I	Roof of Building B1/B3.
1227-10 – 1227-12	Roof core (includes silver paint)	None Detected	NF	I	Roof of Building B4/B6, over a wood base.
1227-13 – 1227-15	Light grey penetration mastic (includes silver paint)	None Detected	NF	I	Edges of Building B4/B6 roof.

 Table 1 – Suspect Materials Sampled & Analytical Results

Sample	Sucreet Materials Samp	% Asb	Fri or NF	l or D	Commonto
Number	Suspect Material	Detected	Material	Condition	Comments
1227-16 -	Dark grey penetration	None			South edge of roof,
1227-18	mastic (includes	Detected NF	I	Building B4/B6.	
4007.40	silver paint)				
1227-19 – 1227-21	Roof core	None Detected	NF	I	Roof of Building B7, over a wood base.
1227-21	Black penetration	None			wood base.
1227-22	mastic	Detected	NF	I	Roof of Building B7.
1227-25 -		None			Sidewalks and porches in
1227-27	Exterior concrete slab	Detected	NF	I	the Portable bldg. area.
1227-28 -	Cornet meetie	None			Bldg. B8, Room B8, on a
1227-30	Carpet mastic	Detected	NF	I	wood base.
1227-31 –	Baseboard mastic	None	NF		Bldg. B8, Room B8.
1227-33	Dasebuaru mastic	Detected	INI	1	Baseboard is not suspect.
1227-34 –	Drywall walls	None	NF	1	Bldg. B8, Room B8. No
1227-38		Detected			joint compound observed.
1229-01 -	Concrete slab	None	NF	I	Southwest parking lot.
1229-03		Detected			
1229-04 – 1229-06	Asphalt	None	NF	I	Southwest parking lot, and south of Portable bldgs.
1229-00		Detected None			
1229-07 -	Coated concrete slab	Detected	NF	I	North Tennis Courts.
1229-10 -		None			
1229-12	Concrete slab	Detected		I	North Bicycle Racks area.
1229-13 -	D'al an and a lat	None			Southeast of Tennis
1229-15	Pink concrete slab	Detected NF	I	Courts.	
1229-16 -	Concrete slab with	None	NF		Building B1/B3. Skim coat
1229-18	skim coat	Detected	111	1	on exterior perimeter only.
1229-19 –	Concrete slab with	None	NF	I	Building B4/B6. Skim coat
1229-21	skim coat	Detected		•	on exterior perimeter only.
1229-22 -	2x4 Fissured ceiling	None	F	I	Building B1/B3. No suspect
1229-24	panels	Detected			ACM observed above.
1229-25 –	Drywall walls	None	NF		Building B1/B3, behind cellulose wallboard. No
1229-29		Detected	INF	I	joint compound observed.
1229-30 -		None			Building B1/B3. Baseboard
1229-32	Baseboard mastic	Detected	NF	I	is not suspect.
1229-33 -	Carpet backing and	None			Building B1/B3,
1229-35	mastic	Detected	NF	I	throughout, on wood base.
1229-36A	2x Fissured ceiling	None	F	1	Building B4/B6. No suspect
- 1229-37	panels	Detected	Г		ACM observed above.
1229-38 -		None			Building B1/B3, behind
1229-42	Drywall walls	Detected	NF	I	cellulose wallboard. No
				joint compound observed.	
1229-43 -	Baseboard mastic	None	NF	I	Building B4/B6. Baseboard
1229-45		Detected	tected		is not suspect.
1229-46 -	Carpet mastic	None		NF I	Building B4/B6,
<u>1229-48</u> 1229-49 –		Detected None			throughout. On wood base.
1229-49 -	2x4 Fissured ceiling panels		d F	I	Building B7. No suspect ACM observed above.
1223-01	Pallelo	Delected	Detected		

Table 1 – Suspect Materials Sampled & Analytical Results

Sample Number	Suspect Material	% Asb Detected	Fri or NF Material	I or D Condition	Comments
1229-52 – 1229-56	Drywall/joint compound on walls	None Detected	NF	I	Building B7, behind cellulose wallboard. Joint compound observed on east wall only.
1229-57 – 1229-59	Carpet mastic	None Detected	NF	I	Building B7, Room B7, on a wood base.
1229-60 – 1229-62	Baseboard mastic	None Detected	NF	I	Building B7. Baseboard is not suspect.
1229-63 – 1229-65	Sink undercoat	None Detected	NF	I	Building B7, underside of two (2) metal sinks.

Table 1 – Suspect Materials Sampled & Analytical Results

Additional Comments:

The buildings were occupied at the time of the survey; therefore, this was a non-destructive survey. Suspect materials not sampled included wallboard mastic, and void spaces within walls.

LEGEND Fri: Friable Material NF: Non-Friable Material I: Intact Condition

D: Damaged Condition

The laboratory may have identified additional layers or compounds within a sample under microscopic analysis that were not observed by the naked eye when the material was sampled in the field.

All materials were generally in good condition at the time of the survey. No obvious vandalism, fire, renovation, demolition or structural damage was observed.

The sampled suspect materials did not contain asbestos. This was a non-destructive survey so the following suspect materials were not sampled:

- Wallboard mastic, and
- Void spaces behind walls.

These materials will need to be considered ACMs until they are sampled and analyzed for asbestos content.

In the event that other suspect ACMs are uncovered during renovation activities, those suspect materials should be inspected, sampled, and analyzed for asbestos content. If not sampled and analyzed, these new suspect materials will need to be assumed positive for asbestos.

The analytical report and chain of custody documentation are attached to this letter report. A sample location map is also attached to this letter report.

LEAD-BASED PAINTS (LBPs)

Prior to sampling, Converse visually surveyed the interior and exterior of each building in the proposed project area for painted or ceramic building components. Our sampling methodology generally followed the "Guidelines for the Evaluation and Control of Lead-Based Paint Hazards in Housing" published by the Department of Housing and Urban

Converse Project No. 22-16-164-01 Copyright 2023 Converse Consultants Development (HUD) in 1995. However, similarly painted building components were treated as homogenous throughout each building.

The LBP Survey was conducted using a Viken Pb200i X-ray fluorescence (XRF) device. The detection level for lead was set at the CDPH definition of lead-based paint, which is 1.0 milligrams per square centimeter (mg/cm²). Suspect components surveyed included:

Interior Components	Exterior Components
Walls	Painted roof felt
Beams	Walls
Windows and associated components	Vents and pipes
Doors and associated components	 Metal and wood fascia and trim
Cabinets	Porticos and beams
	 Rain gutters and downspouts
	Doors and associated components
	 Stairs and associated components
	Electrical boxes and conduits
	 Parking lot stripes
	 Painted curbs and parking stops
	Metal railing
	Goal posts
	Tennis court slab coating
	Light posts

Provided in Table 2 is a summary of the LBPs detected during this survey. All materials were observed to be in intact condition at the time of the survey.

Table 2 – Summary of LBPs and LCMs

Building Component	Paint Color	Lead Conc. (mg/cm ²)	Comments	
Wood cabinets	Orange	1.6	Building B4/B6, Room B4	
Large wood cabinets	Blue	1.6	Building B4/B6, Room B5	
Short wood cabinets	Blue	1.7	Building B4/B6, Room B5	
Wood cabinets	Orange	1.7	Building B4/B6, Room B6	
Parking lot stripes	Yellow	2.2	Southwest parking lot and curbs	

The XRF Summary Table and field notes are attached to this letter report. This table provides a complete list of the components surveyed.

If LBPs are damaged at the time of the renovation/demolition activities, the LBPs will need to be stabilized first. The stabilization will need to be completed by a CDPH licensed lead abatement contractor using workers that have undergone the necessary lead training

Although other painted and/or ceramic materials did not meet the criteria for LBP or LCM, concentrations of lead were detected in these materials. Title 8 CCR 1532.1 (Cal/OSHA Lead regulation) may require workers that perform work that disturbs the LBPs or LCMs such as manual demolition, manual scraping, sanding of painted surfaces, etc. to undergo an exposure assessment including, but not limited to, air monitoring of the breathing zone. Other requirements including training and medical surveillance may be necessary per the lead regulation. Employers are responsible for worker exposure in relation to lead.

In the event that suspect LBPs are observed during the demolition activities that were not previously sampled, these materials should be assumed to contain lead in concentrations exceeding 1.0 mg/cm², until such time that they can be sampled and evaluated for lead content.

CLOSURE

This report is for the sole benefit and exclusive use of the Corona-Norco Unified School District (herein referred to as Client) in accordance with the terms and conditions of our contract under which these services have been provided. Its preparation has been in accordance with generally accepted environmental practices. No other warranty, either express or implied, is made. The Scope of Services associated with the report was designed solely in accordance with the objectives, schedule, budget, and risk-management preferences of Client.

This letter report should not be regarded as a guarantee that no further ACMs or LBPs, beyond that which could be detected within the scope of this survey, are present at the property. Converse makes no warranties or guarantees as to the accuracy or completeness of information provided or compiled by others. It is not possible to absolutely confirm that no ACMs or LBPs exist at the property. If none are identified as part of a limited scope of work, such a conclusion should not be construed as a guaranteed absence of such materials, but merely the results of the evaluation of the property at the time of the survey. Also, events may occur after the survey, which may result in contamination of the property. Additional information, which was not found or available to Converse at the time of report preparation, may result in a modification of the conclusions and recommendations presented.

Any reliance on this report by Third Parties shall be at the Third Party's sole risk.

We appreciate the opportunity to be of service to you. If you should have any questions or comments regarding the results, please contact Laura Tanaka at (626) 930-1261 or Norman Eke at (626) at 930-1260.

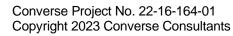
Sincerely,

CONVERSE CONSULTANTS

ans

Rodney Stansfield CDPH LRC #4397 & CAC 97-2309 Sr. Staff Environmental Scientist

Tanaka aura


CDPH LRC #474 & CAC #11-4708 Principal Environmental Scientist

Attached: Certifications Asbestos - Analytical Report & Sample Location Maps LBPs – XRF Summary Table & Field Notes

Certifications

Converse Staff & Laboratory

STATE OF CALIFORNIA

Gavin Newsom, Governor

DEPARTMENT OF INDUSTRIAL RELATIONS **Division of Occupational Safety and Health-Asbestos Certification** 1750 Howe Avenue, Suite 460 Sacramento, CA 95825 (916) 574-2993 Office http://www.dir.ca.gov/dosh/asbestos.html actu@dir.ca.gov

612162093C

138

Converse Consultants Norman S Eke 717 S. Myrtle Drive Monrovia CA 91016 December 27, 2022

Dear Certified Asbestos Consultant or Technician:

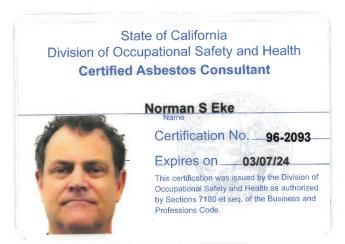
Enclosed is your certification card. To maintain your certification, you must abide by the rules printed on the back of the certification card.

Your certification is valid for a period of one year. If you wish to renew your certification, you must apply for renewal at least 60 days <u>before</u> the expiration date shown on your card. [8 CCR 341.15(h)(1)].

Please hold and do not send copies of your required AHERA refresher renewal certificates to our office until you apply for renewal of your certification.

Certificates must be kept current if you are actively working as a CAC or CSST. The grace period is only for those who are not actively working as an asbestos consultant or site surveillance technician.

Please contact our office at the above address or email w any changes in your contact/mailing information within 15 days of the change.


Sincerely,

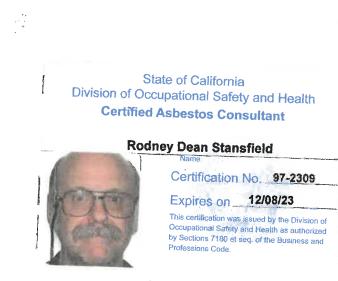
Eric Berg

Eric Berg Deputy Chief of Health

Attachment: Certification Card

cc: File

STATE OF CALIFORNIA DEPARTMENT OF PUBLIC HEALTH



LEAD-RELATED CONSTRUCTION CERTIFICATE

INDIVIDUAL:	CERTIFICATE TYPE:	NUMBER:	EXPIRATION DATE:
	Lead Project Monitor	LRC-00004396	12/17/2023
1 AL	Lead Inspector/Assessor	LRC-00004397	12/17/2023

Rodney Stansfield

Disclaimer: This document alone should not be relied upon to confirm certification status. Compare the individual's photo and name to another valid form of government issued photo identification. Verify the individual's certification status by searching for Lead-Related Construction Professionals at www.cdph.ca.gov/programs/clppb or calling (800) 597-LEAD

STATE OF CALIFORNIA DEPARTMENT OF PUBLIC HEALTH

LEAD-RELATED CONSTRUCTION CERTIFICATE

INDIVIDUAL:

CERTIFICATE TYPE:

Lead Inspector/Assessor

Lead Project Designer

Lead Project Monitor

NUMBER: LRC-00007879 LRC-00007880 LRC-00007878

EXPIRATION DATE:

4/27/2023 4/27/2023 4/27/2023

Laura Tanaka

Disclaimer: This document alone should not be relied upon to confirm certification status. Compare the individual's photo and name to another valid form of government issued photo identification. Verify the individual's certification status by searching for Lead-Related Construction Professionals at www.cdph.ca.gov/programs/clppb or calling (800) 597-LEAD

> State of California Division of Occupational Safety and Health **Certified Asbestos Consultant**

Laura A Tanaka

Certification No. 11-4708

Expires on 01/19/24

This certification was issued by the Division of Occupational Safety and Health as authorized by Sections 7180 et seq. of the Business and Professions Code

Certificate of Accreditation to ISO/IEC 17025:2017

NVLAP LAB CODE: 101384-0

LA Testing-Huntington Beach

Huntington Beach, CA

is accredited by the National Voluntary Laboratory Accreditation Program for specific services, listed on the Scope of Accreditation, for:

Asbestos Fiber Analysis

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communique dated January 2009).

2022-07-01 through 2023-06-30

Effective Dates

For the National Voluntary Laboratory Accreditation Program

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2017

LA Testing-Huntington Beach

5431 Industrial Drive Huntington Beach, CA 92649 Mr. Christopher Miranda Phone: 714-828-4999 Email: cmiranda@latesting.com http://www.latesting.com

ASBESTOS FIBER ANALYSIS

NVLAP LAB CODE 101384-0

Bulk Asbestos Analysis

<u>Code</u>	<u>Description</u>
18/A01	EPA 40 CFR Appendix E to Subpart E of Part 763, Interim Method of the Determination of Asbestos in Bulk Insulation Samples
18/A03	EPA 600/R-93/116: Method for the Determination of Asbestos in Bulk Building Materials

Airborne Asbestos Analysis

Code **Description**

18/A02

U.S. EPA's "Interim Transmission Electron Microscopy Analytical Methods-Mandatory and Nonmandatory-and Mandatory Section to Determine Completion of Response Actions" as found in 40 CFR, Part 763, Subpart E, Appendix A.

For the National Voluntary Laboratory Accreditation Program

Asbestos

Analytical Report & Chain of Custody Sample Location Maps

Converse Project No. 22-16-164-01 Copyright 2023 Converse Consultants

Tel/Fax: (714) 828-4999 / (714) 828-4944 http://www.LATesting.com / gardengrovelab@latesting.com
 LA Testing Order:
 332225689

 Customer ID:
 32CONV56

 Customer PO:
 221616401

 Project ID:

Phone:	(626) 930-1260
Fax:	(626) 930-1212
Received Date:	12/28/2022 8:00 AM
Analysis Date:	01/04/2023 - 01/05/2023
Collected Date:	12/27/2022

Project: 22-16-164-01

Attention: Laura Tanaka

Converse Consultants 717 S Myrtle Avenue Monrovia, CA 91016

Test Report: Asbestos Analysis of Bulk Materials via AHERA Method 40CFR 763 Subpart E Appendix E supplemented with EPA 600/R-93/116 using Polarized Light Microscopy

Sample		Non-Asbestos			Asbestos
	Description	Appearance	% Fibrous	% Non-Fibrous	% Туре
1227-01-Roofing	BLDG B8, ROOF, NORTH - PLASTICIZED ROOF FELT	Gray/White Fibrous Homogeneous	10% Synthetic	90% Non-fibrous (Other)	None Detected
1227-01-Adhesive	BLDG B8, ROOF, NORTH - PLASTICIZED ROOF FELT	Brown Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
1227-01-Tar 332225689-0001B	BLDG B8, ROOF, NORTH - PLASTICIZED ROOF FELT	Black Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
1227-01-Felt 332225689-0001C	BLDG B8, ROOF, NORTH - PLASTICIZED ROOF FELT	Gray Fibrous Homogeneous	75% Cellulose 10% Glass	15% Non-fibrous (Other)	None Detected
1227-01-Foam 332225689-0001D	BLDG B8, ROOF, NORTH - PLASTICIZED ROOF FELT	Yellow Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
1227-02-Roofing	BLDG B8, ROOF, SE - PLASTICIZED ROOF FELT	Gray/White Fibrous Homogeneous	10% Synthetic	90% Non-fibrous (Other)	None Detected
1227-02-Adhesive	BLDG B8, ROOF, SE - PLASTICIZED ROOF FELT	Brown Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
1227-02-Tar 332225689-0002B	BLDG B8, ROOF, SE - PLASTICIZED ROOF FELT	Black Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
1227-02-Felt 332225689-0002C	BLDG B8, ROOF, SE - PLASTICIZED ROOF FELT	Gray Fibrous Homogeneous	75% Cellulose 10% Glass	15% Non-fibrous (Other)	None Detected
1227-02-Foam	BLDG B8, ROOF, SE - PLASTICIZED ROOF FELT	Yellow Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
1227-03-Roofing 332225689-0003	BLDG B8, ROOF, WEST - PLASTICIZED ROOF FELT	Gray/White Fibrous Homogeneous	10% Synthetic	90% Non-fibrous (Other)	None Detected
1227-03-Adhesive	BLDG B8, ROOF, WEST - PLASTICIZED ROOF FELT	Brown Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
1227-03-Felt 332225689-0003B	BLDG B8, ROOF, WEST - PLASTICIZED ROOF FELT	Gray Fibrous Homogeneous	60% Cellulose 12% Glass	28% Non-fibrous (Other)	None Detected

Project ID:

Test Report: Asbestos Analysis of Bulk Materials via AHERA Method 40CFR 763 Subpart E Appendix E supplemented with EPA 600/R-93/116 using Polarized Light Microscopy

De	Description	A	Non-Asbe		<u>Asbestos</u>
Sample	Description	Appearance	% Fibrous	% Non-Fibrous	% Type
227-03-Foam 32225689-0003C	BLDG B8, ROOF, WEST - PLASTICIZED ROOF FELT	Yellow Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
1227-04-Roofing	BLDG B1/B3, ROOF, NORTH - ROOF	Black Fibrous	10% Glass	90% Non-fibrous (Other)	None Detected
332225689-0004	CORE	Heterogeneous			
227-04-Mastic	BLDG B1/B3, ROOF, NORTH - ROOF	Black Non-Fibrous		100% Non-fibrous (Other)	None Detected
332225689-0004A	CORE	Homogeneous			
1227-04-Silver Paint	BLDG B1/B3, ROOF, NORTH - ROOF	Black/Silver Non-Fibrous		100% Non-fibrous (Other)	None Detected
32225689-0004B Result includes a small amou	CORE unt of inseparable attached ma	Heterogeneous			
			12% Glass	99% Non fibrous (Other)	Nono Detector
1227-05-Roofing	BLDG B1/B3, ROOF, SE - ROOF CORE	Gray/Black Fibrous Heterogeneous	12% Glass	88% Non-fibrous (Other)	None Detected
227-05-Mastic	BLDG B1/B3, ROOF, SE - ROOF CORE	Black Non-Fibrous		100% Non-fibrous (Other)	None Detected
332225689-0005A		Homogeneous			
227-05-Silver Paint	BLDG B1/B3, ROOF, SE - ROOF CORE	Silver Non-Fibrous		100% Non-fibrous (Other)	None Detected
32225689-0005B		Homogeneous			
227-06-Roofing	BLDG B1/B3, ROOF, SW - ROOF CORE	Black Fibrous	5% Cellulose 12% Glass	83% Non-fibrous (Other)	None Detected
32225689-0006		Heterogeneous			
227-06-Mastic	BLDG B1/B3, ROOF, SW - ROOF CORE	Black Non-Fibrous		100% Non-fibrous (Other)	None Detected
332225689-0006A		Homogeneous			
227-06-Silver Paint	BLDG B1/B3, ROOF, SW - ROOF CORE	Silver Non-Fibrous		100% Non-fibrous (Other)	None Detected
32225689-0006B		Homogeneous			
227-07-Mastic	BLDG B1/B3, ROOF, NORTH EDGE - PENETRATION MASTIC	Black Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
1227-07-Silver Paint	BLDG B1/B3, ROOF,	Silver		100% Non-fibrous (Other)	None Detected
332225689-0007A	NORTH EDGE - PENETRATION MASTIC	Non-Fibrous Homogeneous			
227-08-Mastic	BLDG B1/B3, ROOF, SE - PENETRATION	Black Fibrous	3% Glass	97% Non-fibrous (Other)	None Detected
32225689-0008	MASTIC	Heterogeneous			
227-08-Silver Paint	BLDG B1/B3, ROOF, SE - PENETRATION	Silver Non-Fibrous		100% Non-fibrous (Other)	None Detected
32225689-0008A	MASTIC	Homogeneous			
227-09-Mastic	BLDG B1/B3, ROOF, SW - PENETRATION	Black Non-Fibrous		100% Non-fibrous (Other)	None Detected
332225689-0009	MASTIC	Homogeneous			
227-09-Silver Paint	BLDG B1/B3, ROOF, SW - PENETRATION MASTIC	Silver Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
1227-10-Roofing	BLDG B4/B6, ROOF,	Homogeneous Gray/Tan/Black	10% Glass	90% Non-fibrous (Other)	None Detected
332225689-0010	EAST - ROOF CORE	Fibrous Heterogeneous			
1227-10-Mastic	BLDG B4/B6, ROOF,	Black		100% Non-fibrous (Other)	None Detected
332225689-0010A	EAST - ROOF CORE	Non-Fibrous Homogeneous			

Initial report from: 01/05/2023 12:23:44

			Non-Asbe	<u>Asbestos</u>	
Sample	Description	Appearance	% Fibrous	% Non-Fibrous	% Туре
1227-10-Silver Paint	BLDG B4/B6, ROOF, EAST - ROOF CORE	Silver Non-Fibrous		100% Non-fibrous (Other)	None Detected
332225689-0010B		Homogeneous	10% Glass	00% Non fibrous (Other)	None Detected
1227-11-Roofing	BLDG B4/B6, ROOF, CENTER - ROOF CORE	Gray/Black Fibrous Heterogeneous	10% Glass	90% Non-fibrous (Other)	None Detected
1227-11-Mastic	BLDG B4/B6, ROOF, CENTER - ROOF	Black Non-Fibrous		100% Non-fibrous (Other)	None Detected
332225689-0011A	CORE	Homogeneous			
1227-11-Silver Paint	BLDG B4/B6, ROOF, CENTER - ROOF	Silver Non-Fibrous		100% Non-fibrous (Other)	None Detected
332225689-0011B	CORE	Homogeneous			
1227-12-Roofing	BLDG B4/B6, ROOF, WEST - ROOF CORE	Black Fibrous	8% Synthetic 10% Glass	82% Non-fibrous (Other)	None Detected
332225689-0012		Homogeneous			
1227-12-Mastic	BLDG B4/B6, ROOF, WEST - ROOF CORE	Black Non-Fibrous		100% Non-fibrous (Other)	None Detected
332225689-0012A		Homogeneous			New Data to 1
1227-12-Silver Paint	BLDG B4/B6, ROOF, WEST - ROOF CORE	Silver Non-Fibrous		100% Non-fibrous (Other)	None Detected
332225689-0012B		Homogeneous		100% Non Streets (Other)	None Datast
1227-13-Mastic	BLDG B4/B6, ROOF, EAST - LIGHT GREY PENETRATION	Black Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
	MASTIC	lionogeneous			
1227-13-Silver Paint	BLDG B4/B6, ROOF, EAST - LIGHT GREY	Silver Non-Fibrous		100% Non-fibrous (Other)	None Detected
332225689-0013A	PENETRATION	Homogeneous			
1227-14-Mastic	BLDG B4/B6, ROOF, SOUTH - LIGHT	Black Non-Fibrous		100% Non-fibrous (Other)	None Detected
332225689-0014	GREY PENETRATION MASTIC	Homogeneous			
1227-14-Silver Paint	BLDG B4/B6, ROOF, SOUTH - LIGHT	Silver Non-Fibrous		100% Non-fibrous (Other)	None Detected
332225689-0014A	GREY PENETRATION MASTIC	Homogeneous			
1227-15-Mastic	BLDG B4/B6, ROOF, NORTH - LIGHT	Black Fibrous	5% Glass	95% Non-fibrous (Other)	None Detected
332225689-0015	GREY PENETRATION MASTIC	Heterogeneous			
1227-15-Silver Paint	BLDG B4/B6, ROOF, NORTH - LIGHT	Silver Non-Fibrous		100% Non-fibrous (Other)	None Detected
332225689-0015A	GREY PENETRATION MASTIC	Homogeneous			
1227-16-Mastic 1	BLDG B4/B6, ROOF, SE - DARK GREY	Gray/Black Fibrous	8% Cellulose	92% Non-fibrous (Other)	None Detected
332225689-0016	PENETRATION MASTIC	Homogeneous			
1227-16-Silver Paint	BLDG B4/B6, ROOF,	Silver		100% Non-fibrous (Other)	None Detected
332225689-0016A	SE - DARK GREY PENETRATION MASTIC	Non-Fibrous Homogeneous			

			Non-Asbes	Asbestos	
Sample	Description	Appearance	% Fibrous	% Non-Fibrous	% Type
1227-16-Mastic 2 332225689-0016B	BLDG B4/B6, ROOF, SE - DARK GREY PENETRATION MASTIC	Black Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
1227-17-Mastic 1 332225689-0017	BLDG B4/B6, ROOF, SOUTH - DARK GREY PENETRATION MASTIC	Gray/Black Fibrous Homogeneous	10% Cellulose	90% Non-fibrous (Other)	None Detected
1227-17-Silver Paint	BLDG B4/B6, ROOF, SOUTH - DARK GREY PENETRATION MASTIC	Silver Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
1227-17-Mastic 2 332225689-0017B	BLDG B4/B6, ROOF, SOUTH - DARK GREY PENETRATION MASTIC	Black Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
1227-18-Mastic 1 332225689-0018	BLDG B4/B6, ROOF, SW - DARK GREY PENETRATION MASTIC	Gray/Black Fibrous Homogeneous	8% Cellulose	92% Non-fibrous (Other)	None Detected
1227-18-Silver Paint	BLDG B4/B6, ROOF, SW - DARK GREY PENETRATION MASTIC	Silver Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
1227-18-Mastic 2 332225689-0018B	BLDG B4/B6, ROOF, SW - DARK GREY PENETRATION MASTIC	Black Fibrous Heterogeneous	5% Glass	95% Non-fibrous (Other)	None Detected
1227-19-Shingle	BLDG B7, ROOF, NORTH - ROOF CORE	Gray/Black Fibrous Heterogeneous	20% Glass	80% Non-fibrous (Other)	None Detected
1227-19-Tar Felt 332225689-0019A	BLDG B7, ROOF, NORTH - ROOF CORE	Black Fibrous Homogeneous	15% Glass	85% Non-fibrous (Other)	None Detected
1227-20-Shingle	BLDG B7, ROOF, EAST - ROOF CORE	Gray/Black Fibrous Heterogeneous	35% Glass	65% Non-fibrous (Other)	None Detected
1227-20-Tar Felt 332225689-0020A	BLDG B7, ROOF, EAST - ROOF CORE	Black Fibrous Homogeneous	45% Glass	55% Non-fibrous (Other)	None Detected
1227-20-Insulation	BLDG B7, ROOF, EAST - ROOF CORE	Brown Fibrous Homogeneous	90% Cellulose	10% Non-fibrous (Other)	None Detected
1227-21-Shingle	BLDG B7, ROOF, SW - ROOF CORE	Gray/Black Fibrous Heterogeneous	15% Glass	85% Non-fibrous (Other)	None Detected
1227-21-Tar Felt 332225689-0021A	BLDG B7, ROOF, SW - ROOF CORE	Black Fibrous Homogeneous	25% Glass	75% Non-fibrous (Other)	None Detected
1227-22-Penetration Mastic 332225689-0022	BLDG B7, ROOF, EAST - BLACK PENETRATION MASTIC	Gray/Black Non-Fibrous Heterogeneous	5% Cellulose	95% Non-fibrous (Other)	None Detected

			Non-Asbes	stos	Asbestos
Sample	Description	Appearance	% Fibrous	% Non-Fibrous	% Туре
1227-22-Shingle 332225689-0022A	BLDG B7, ROOF, EAST - BLACK PENETRATION MASTIC	Gray/Black Fibrous Heterogeneous	5% Cellulose 35% Glass	60% Non-fibrous (Other)	None Detected
1227-23	BLDG B7, ROOF, CENTER - BLACK	Gray/Black Non-Fibrous	5% Cellulose	95% Non-fibrous (Other)	None Detected
332225689-0023	PENETRATION MASTIC	Heterogeneous			
1227-24 332225689-0024	BLDG B7, ROOF, CENTER - BLACK PENETRATION	Gray/Black Fibrous Heterogeneous	8% Cellulose 2% Glass	90% Non-fibrous (Other)	None Detected
	MASTIC				
1227-25	BETWEEN BLDG B7 AND B8 - EXTERIOR	Gray Non-Fibrous		100% Non-fibrous (Other)	None Detected
332225689-0025 1227-26	CONCRETE SLAB COURTYARD,	Homogeneous		100% Non fibrous (Other)	None Detected
332225689-0026	CONTTARD, CENTER - EXTERIOR CONCRETE SLAB	Gray Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Delected
1227-27	PORCH, IN FRONT OF ROOM B2 - EXTERIOR	Gray Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
	CONCRETE SLAB	Homogeneous			
1227-28-Mastic	BLDG B8, SE DOORWAY -	Yellow Non-Fibrous		100% Non-fibrous (Other)	None Detected
332225689-0028	CARPET MASTIC	Homogeneous			New Datastal
1227-28-Leveler 1	BLDG B8, SE DOORWAY - CARPET MASTIC	White Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
1227-28-Leveler 2	BLDG B8, SE DOORWAY -	Gray Non-Fibrous		100% Non-fibrous (Other)	None Detected
332225689-0028B		Homogeneous			Name Data da d
1227-29-Mastic	BLDG B8, NW DOORWAY - CARPET MASTIC	Yellow Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
1227-29-Leveler	BLDG B8, NW DOORWAY -	Gray Non-Fibrous		100% Non-fibrous (Other)	None Detected
332225689-0029A		Homogeneous			News District
1227-30 332225689-0030	BLDG B8, NW DOORWAY - CARPET MASTIC	Yellow Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
1227-31	BLDG B8, SOUTH WALL, EAST -	Beige Non-Fibrous		100% Non-fibrous (Other)	None Detected
332225689-0031	BASEBOARD MASTIC	Homogeneous			
1227-32	BLDG B8, WEST WALL -	Beige Non-Fibrous		100% Non-fibrous (Other)	None Detected
332225689-0032	BASEBOARD MASTIC	Homogeneous			
1227-33	BLDG B8, NORTH WALL -	Beige Non-Fibrous		100% Non-fibrous (Other)	None Detected
332225689-0033	BASEBOARD MASTIC	Homogeneous			
1227-34	BLDG B8, EAST WALL, SOUTH -	Brown/White Fibrous	10% Cellulose	90% Non-fibrous (Other)	None Detected
332225689-0034	DRYWALL WALLS	Heterogeneous			

Test Report: Asbestos Analysis of Bulk Materials via AHERA Method 40CFR 763 Subpart E Appendix E supplemented with EPA 600/R-93/116 using Polarized Light Microscopy

		Non-Asbestos			Asbestos
Sample	Description	Appearance	% Fibrous	% Non-Fibrous	% Туре
1227-35 332225689-0035	BLDG B8, EAST WALL - DRYWALL WALLS	Brown/White Fibrous Heterogeneous	10% Cellulose	90% Non-fibrous (Other)	None Detected
1227-36 332225689-0036	BLDG B8, NE CORNER - DRYWALL WALLS	Brown/White Fibrous Heterogeneous	10% Cellulose	90% Non-fibrous (Other)	None Detected
1227-37 332225689-0037	BLDG B8, NW CORNER - DRYWALL WALLS	Brown/White Fibrous Heterogeneous	10% Cellulose	90% Non-fibrous (Other)	None Detected
1227-38 332225689-0038	BLDG B8, WEST WALL - DRYWALL WALLS	Brown/White Fibrous Heterogeneous	10% Cellulose	90% Non-fibrous (Other)	None Detected

Analyst(s) Alexis Rodriguez (36) Irene Chang (20) Kaylin Luciani (3) Mindy Le (5) Thanh Nguyen (17)

nickae

Michael Chapman, Laboratory Manager or Other Approved Signatory

LA Testing maintains liability limited to cost of analysis. Interpretation and use of test results are the responsibility of the client. This report relates only to the samples reported above, and may not be reproduced, except in full, without written approval by LA Testing. LA Testing bears no responsibility for sample collection activities or analytical method limitations. The report reflects the samples as received. Results are generated from the field sampling data (sampling volumes and areas, locations, etc.) provided by the client on the Chain of Custody. Samples are within quality control criteria and met method specifications unless otherwise noted. The above analyses were performed in general compliance with Appendix E to Subpart E of 40 CFR (previously EPA 600/M4-82-020 "Interim Method") but augmented with procedures outlined in the 1993 ("final") version of the method. This report not be used by the client to claim produc certification, approval, or endorsement by NVLAP, NIST or any agency of the federal government. Non-friable organically bound materials present a problem matrix and therefore LA Testing recommends gravimetric reduction prior to analysis. Unless requested by the client, building materials manufactured with multiple layers (i.e. linoleum, wallboard, etc.) are reported as a single sample. Estimation of uncertainty is available on request.

Samples analyzed by LA Testing Huntington Beach, CA NVLAP Lab Code 101384-0, CA ELAP 1406

Initial report from: 01/05/2023 12:23:44

Tel/Fax: (714) 828-4999 / (714) 828-4944 http://www.LATesting.com / gardengrovelab@latesting.com
 LA Testing Order:
 332225714

 Customer ID:
 32CONV56

 Customer PO:
 221616401

 Project ID:

Phone:	(626) 930-1260
Fax:	(626) 930-1212
Received Date:	12/30/2022 8:00 AM
Analysis Date:	01/06/2023 - 01/09/2023
Collected Date:	12/29/2022

Project: 22-16-164-01

Attention: Laura Tanaka

Converse Consultants 717 S Myrtle Avenue Monrovia, CA 91016

Test Report: Asbestos Analysis of Bulk Materials via AHERA Method 40CFR 763 Subpart E Appendix E supplemented with EPA 600/R-93/116 using Polarized Light Microscopy

Sample Descript		<u>Non-Asbestos</u>			<u>Asbestos</u>
	Description	otion Appearance	% Fibrous	% Non-Fibrous	% Туре
1229-01	SW PARKING, WEST - CONCRETE	Gray Non-Fibrous		100% Non-fibrous (Other)	None Detected
1229-02	SLAB SW PARKING, SE - CONCRETE SLAB	Homogeneous Gray Non-Fibrous		100% Non-fibrous (Other)	None Detected
332225714-0002	CONCRETE SLAB	Homogeneous			
1229-03	SW PARKING, NORTH -	Gray/Tan Non-Fibrous		100% Non-fibrous (Other)	None Detected
332225714-0003 1229-04	CONCRETE SLAB SW PARKING,	Homogeneous Black		100% Non-fibrous (Other)	None Detected
332225714-0004	SOUTH - ASPHALT	Non-Fibrous Homogeneous			
1229-05	SW PARKING, WEST - ASPHALT	Black Non-Fibrous		100% Non-fibrous (Other)	None Detected
332225714-0005		Homogeneous			
1229-06 332225714-0006	SOUTH OF BLDGS B4/B6 + B7 - ASPHALT	Gray/Black Non-Fibrous Heterogeneous		100% Non-fibrous (Other)	None Detected
1229-07-Coating	TENNIS COURTS, WEST - COATED	Red Non-Fibrous		100% Non-fibrous (Other)	None Detected
332225714-0007	CONCRETE SLAB	Homogeneous			
1229-07-Concrete	TENNIS COURTS, WEST - COATED CONCRETE SLAB	Tan Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
1229-08-Coating	TENNIS COURTS, NORTH - COATED CONCRETE SLAB	Green Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
1229-08-Concrete	TENNIS COURTS, NORTH - COATED CONCRETE SLAB	Tan Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
1229-09-Coating	TENNIS COURTS, WEST - COATED CONCRETE SLAB	Red Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
1229-09-Concrete	TENNIS COURTS, WEST - COATED	Gray/Black Non-Fibrous		100% Non-fibrous (Other)	None Detected
332225714-0009A	CONCRETE SLAB	Heterogeneous			
1229-10 332225714-0010	BIKE RACKS, S - CONCRETE SLAB	Gray Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
1229-11	BIKE RACKS, SW - CONCRETE SLAB	Gray Non-Fibrous		100% Non-fibrous (Other)	None Detected
332225714-0011	CUNCRETE SLAB	Non-Fibrous Homogeneous			
1229-12	BIKE RACKS, CENTER -	Gray/Tan Non-Fibrous		100% Non-fibrous (Other)	None Detected
332225714-0012	CONCRETE SLAB	Homogeneous			
1229-13 332225714-0013	PATCHES NEAR TENNIS COURTS SE - PINK CONCRETE SLAB	Tan Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected

Initial report from: 01/09/2023 11:28:26

	D escription	•		sbestos	Asbestos
Sample	Description	Appearance	% Fibrous	% Non-Fibrous	% Type
1229-14 332225714-0014	PATCHES NEAR TENNIS COURTS SE - PINK CONCRETE SLAB	Tan Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
1229-15	PATCHES NEAR TENNIS COURTS SE	Brown Non-Fibrous		100% Non-fibrous (Other)	None Detected
332225714-0015	- PINK CONCRETE SLAB	Homogeneous			
1229-16-Skim Coat	BLDG B1/B3, FOUNDATION,	Beige Non-Fibrous		100% Non-fibrous (Other)	None Detected
332225714-0016	EAST, N - CONCRETE SLAB WITH SKIM COAT	Homogeneous			
1229-16-Concrete	BLDG B1/B3, FOUNDATION,	Gray Non-Fibrous		100% Non-fibrous (Other)	None Detected
332225714-0016A	EAST, N - CONCRETE SLAB WITH SKIM COAT	Homogeneous			
1229-17-Skim Coat	BLDG B1/B3, FOUNDATION,	Beige Non-Fibrous		100% Non-fibrous (Other)	None Detected
332225714-0017	EAST, S - CONCRETE SLAB WITH SKIM COAT	Homogeneous			
1229-17-Concrete	BLDG B1/B3, FOUNDATION,	Gray Non-Fibrous		100% Non-fibrous (Other)	None Detected
332225714-0017A	EAST, S - CONCRETE SLAB WITH SKIM COAT	Homogeneous			
1229-18-Skim Coat	BLDG B1/B3, FOUNDATION,	White Non-Fibrous		100% Non-fibrous (Other)	None Detected
332225714-0018	SOUTH - CONCRETE SLAB WITH SKIM COAT	Homogeneous			
1229-18-Concrete	BLDG B1/B3, FOUNDATION,	Gray/Tan Non-Fibrous		100% Non-fibrous (Other)	None Detected
332225714-0018A	SOUTH - CONCRETE SLAB WITH SKIM COAT	Homogeneous			
1229-19-Skim Coat	BLDG B4/B6, FOUNDATION,	Black/Beige Non-Fibrous		100% Non-fibrous (Other)	None Detected
332225714-0019	SOUTH, W - CONCRETE SLAB WITH SKIM COAT	Heterogeneous			
1229-19-Concrete	BLDG B4/B6,	Gray		100% Non-fibrous (Other)	None Detected
332225714-0019A	FOUNDATION, SOUTH, W - CONCRETE SLAB WITH SKIM COAT	Non-Fibrous Homogeneous			
1229-20-Skim Coat	BLDG B4/B6, FOUNDATION,	Beige Non-Fibrous		100% Non-fibrous (Other)	None Detected
332225714-0020	SOUTH, E - CONCRETE SLAB WITH SKIM COAT	Homogeneous			
1229-20-Concrete	BLDG B4/B6, FOUNDATION,	Gray Non-Fibrous		100% Non-fibrous (Other)	None Detected
332225714-0020A	SOUTH, E - CONCRETE SLAB WITH SKIM COAT	Homogeneous			

Test Report: Asbestos Analysis of Bulk Materials via AHERA Method 40CFR 763 Subpart E Appendix E supplemented with EPA 600/R-93/116 using Polarized Light Microscopy

. .	-		Non-Asbesto		Asbestos
Sample	Description	Appearance	% Fibrous	% Non-Fibrous	% Туре
1229-21-Skim Coat 332225714-0021	BLDG B4/B6, FOUNDATION, EAST - CONCRETE SLAB WITH SKIM COAT	Beige Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
1229-21-Concrete	BLDG B4/B6, FOUNDATION, EAST - CONCRETE SLAB	Gray Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
552225714-0021A	WITH SKIM COAT	Homogeneous			
1229-22	BLDG B1/B3, RM B1, WEST - 2 X 4	Tan/White Fibrous	60% Cellulose 15% Min. Wool	15% Non-fibrous (Other)	None Detected
332225714-0022	FISSURED CEILING PANELS	Heterogeneous	10% Glass		
1229-23	BLDG B1/B3, RM B2, NORTH - 2 X 4	Tan/White Fibrous	60% Cellulose 10% Glass	15% Mica 15% Non-fibrous (Other)	None Detected
332225714-0023	FISSURED CEILING PANELS	Heterogeneous			
1229-24	BLDG B1/B3, RM B3,	Tan/White	50% Cellulose	30% Non-fibrous (Other)	None Detected
332225714-0024	EAST - 2 X 4 FISSURED CEILING PANELS	Fibrous Heterogeneous	20% Min. Wool		
1229-25	BLDG B1/B3, RM B1, WEST WALL -	Brown/Beige Fibrous	9% Cellulose	91% Non-fibrous (Other)	None Detected
332225714-0025	DRYWALL WALLS	Heterogeneous			
1229-26	BLDG B1/B3, RM B1, SOUTH WALL -	Brown/Beige Fibrous	7% Cellulose	93% Non-fibrous (Other)	None Detected
332225714-0026	DRYWALL WALLS	Heterogeneous			
1229-27 332225714-0027	BLDG B1/B3, RM B2, NORTH WALL - DRYWALL WALLS	Brown/Beige Fibrous Heterogeneous	11% Cellulose	89% Non-fibrous (Other)	None Detected
1229-28	BLDG B1/B3, RM B3, EAST WALL -	Brown/White/Yellow Fibrous	7% Cellulose	93% Non-fibrous (Other)	None Detected
332225714-0028 Result includes inseparable	DRYWALL WALLS attached yellow mastic-like mate	Heterogeneous			
1229-29	BLDG B1/B3, RM B3, NORTH, WEST -	Brown/White/Yellow Fibrous	7% Cellulose	93% Non-fibrous (Other)	None Detected
332225714-0029 Result includes insenarable	DRYWALL WALLS attached yellow mastic-like mate	Heterogeneous			
1229-30	BLDG B1/B3, RM B1,	Tan		100% Non-fibrous (Other)	None Detected
332225714-0030	WEST - BASEBOARD MASTIC	Non-Fibrous Homogeneous			
1229-31-Mastic 1	BLDG B1/B3, RM B2, EAST - BASEBOARD	Tan Non-Fibrous		100% Non-fibrous (Other)	None Detected
332225714-0031	MASTIC	Homogeneous			
1229-31-Mastic 2	BLDG B1/B3, RM B2, EAST - BASEBOARD	Yellow Non-Fibrous	2% Fibrous (Other)	98% Non-fibrous (Other)	None Detected
332225714-0031A	MASTIC	Homogeneous			
1229-32-Mastic 1	BLDG B1/B3, RM B3, EAST, S -	Beige Non-Fibrous		100% Non-fibrous (Other)	None Detected
332225714-0032	BASEBOARD MASTIC	Homogeneous			
1229-32-Mastic 2	BLDG B1/B3, RM B3, EAST, S -	Brown Non-Fibrous		100% Non-fibrous (Other)	None Detected
332225714-0032A	BASEBOARD MASTIC	Homogeneous			
1229-33	BLDG B1/B3, RM B1, SW - CARPET	Tan Fibrous	2% Synthetic	98% Non-fibrous (Other)	None Detected
332225714-0033	BACKING + MASTIC	Heterogeneous			

Initial report from: 01/09/2023 11:28:26

			Non-Asbes		Asbestos
Sample		ppearance	% Fibrous	% Non-Fibrous	% Туре
	e attached carpet backing material.				
1229-34	EAST - CARPET Fi	an brous	15% Cellulose 2% Synthetic	83% Non-fibrous (Other)	None Detected
332225714-0034		eterogeneous			
	e attached carpet backing material.				
1229-35	SE - CARPET Fi	ellow brous	15% Cellulose	85% Non-fibrous (Other)	None Detected
332225714-0035		eterogeneous			
	e attached carpet backing material.				
1229-36A	, ,	an/White brous	60% Cellulose 10% Min. Wool	25% Non-fibrous (Other)	None Detected
332225714-0036		eterogeneous	5% Glass		
1229-36B	BLDG B4/B6, RM B5, Ta	an/White	60% Cellulose	25% Non-fibrous (Other)	None Detected
332225714-0037	FISSURED CEILING H	brous eterogeneous	10% Min. Wool 5% Glass		
1229-37	PANELS BLDG B4/B6, RM B6, Ta	an/White	40% Cellulose	40% Non-fibrous (Other)	None Detected
	, ,	brous	20% Min. Wool	()	
332225714-0038	FISSURED CEILING H	eterogeneous			
1229-38	, ,	rown/White	10% Cellulose	90% Non-fibrous (Other)	None Detected
332225714-0039	,	brous eterogeneous			
1229-39	, ,	rown/White	10% Cellulose	90% Non-fibrous (Other)	None Detected
332225714-0040		brous eterogeneous			
1229-40		rown/White	10% Cellulose	90% Non-fibrous (Other)	None Detected
332225714-0041		brous eterogeneous			
1229-41		rown/White	10% Cellulose	90% Non-fibrous (Other)	None Detected
		brous			
332225714-0042		eterogeneous			
1229-42-Mastic	, , ,	ellow/Clear on-Fibrous		100% Non-fibrous (Other)	None Detected
332225714-0043		omogeneous			
1229-42-Drywall	BLDG B4/B6, RM B6, Bi	rown/White	10% Cellulose	90% Non-fibrous (Other)	None Detected
332225714-0043A		brous eterogeneous			
1229-43-Mastic 1		an		100% Non-fibrous (Other)	None Detected
	SOUTH - N	on-Fibrous			
332225714-0044	BASEBOARD H	omogeneous			
1229-43-Mastic 2	BLDG B4/B6, RM B4, Ye	ellow		100% Non-fibrous (Other)	None Detected
000005744 00444		on-Fibrous			
332225714-0044A	BASEBOARD H MASTIC	omogeneous			
1229-43-Mastic 3		eige		100% Non-fibrous (Other)	None Detected
222225714 00449		on-Fibrous			
332225714-0044B	MASTIC	omogeneous			
1229-44-Mastic 1		eige		100% Non-fibrous (Other)	None Detected
332225714-0045		on-Fibrous			
JJLLLJI IT-UUTJ	MASTIC	omogeneous			

			Non-Asbe	stos	<u>Asbestos</u>
Sample	Description	Appearance	% Fibrous	% Non-Fibrous	% Туре
1229-44-Mastic 2 332225714-0045A	BLDG B4/B6, RM B5, SOUTH - BASEBOARD	White Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
1229-45-Mastic 1	MASTIC BLDG B4/B6, RM B6,	Beige		100% Non-fibrous (Other)	None Detected
332225714-0046	NORTH - BASEBOARD MASTIC	Non-Fibrous Homogeneous			
1229-45-Mastic 2 332225714-0046A	BLDG B4/B6, RM B6, NORTH - BASEBOARD	Tan Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
	MASTIC				
1229-46-Mastic 1 332225714-0047	BLDG B4/B6, RM B4, SOUTH - CARPET MASTIC	Yellow Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
1229-46-Mastic 2	BLDG B4/B6, RM B4, SOUTH - CARPET MASTIC	Brown Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
1229-47-Carpet	BLDG B4/B6, RM B5,	White/Various/Blac	90% Synthetic	10% Non-fibrous (Other)	None Detected
332225714-0048	SE - CARPET MASTIC	k Fibrous Homogeneous			
1229-47-Mastic	BLDG B4/B6, RM B5, SE - CARPET	Yellow Non-Fibrous		100% Non-fibrous (Other)	None Detected
332225714-0048A	MASTIC	Homogeneous			
1229-48-Carpet	BLDG B4/B6, RM B6, EAST - CARPET MASTIC	Blue Fibrous Homogeneous	90% Synthetic	10% Non-fibrous (Other)	None Detected
1229-48-Mastic	BLDG B4/B6, RM B6,	Yellow		100% Non-fibrous (Other)	None Detected
332225714-0049A	EAST - CARPET MASTIC	Non-Fibrous Homogeneous			
1229-49 332225714-0050	BLDG B7, NORTH - 2 X 4 FISSURED CEILING PANELS	Brown/White Fibrous Heterogeneous	65% Cellulose	35% Non-fibrous (Other)	None Detected
1229-50	BLDG B7, EAST - 2 X	Brown/White	65% Cellulose	35% Non-fibrous (Other)	None Detected
332225714-0051	4 FISSURED CEILING PANELS	Fibrous Heterogeneous			
1229-51	BLDG B7, SOUTH - 2 X 4 FISSURED	Tan/White Fibrous	40% Cellulose	60% Non-fibrous (Other)	None Detected
332225714-0052	CEILING PANELS	Heterogeneous			
1229-52-Joint Compound	BLDG B7, NORTH WALL - DRYWALL WALL WITH JOINT				Layer Not Present
332225714-0053		Prown/M/hita		000/ Non fibraus (Other)	None Detected
1229-52-Drywall 332225714-0053A	BLDG B7, NORTH WALL - DRYWALL WALL WITH JOINT COMPOUND	Brown/White Fibrous Heterogeneous	10% Cellulose	90% Non-fibrous (Other)	NUTHE DELECTED
1229-53-Joint	BLDG B7, EAST	White		100% Non-fibrous (Other)	None Detected
Compound	WALL - DRYWALL WALL WITH JOINT	Non-Fibrous Homogeneous			
332225714-0054		Poigo		100/ Non Shrous (Other)	Nono D-tt
1229-53-Tape 332225714-0054A	BLDG B7, EAST WALL - DRYWALL WALL WITH JOINT COMPOUND	Beige Fibrous Homogeneous	90% Cellulose	10% Non-fibrous (Other)	None Detected

			<u>Asbestos</u>		
Sample	Description	Appearance	% Fibrous	% Non-Fibrous	% Туре
1229-53-Mastic 332225714-0054B	BLDG B7, EAST WALL - DRYWALL WALL WITH JOINT COMPOUND	Yellow Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
1229-53-Insulation	BLDG B7, EAST WALL - DRYWALL WALL WITH JOINT COMPOUND	Yellow Fibrous Homogeneous	95% Glass	5% Non-fibrous (Other)	None Detected
1229-53-Drywall 332225714-0054D	BLDG B7, EAST WALL - DRYWALL WALL WITH JOINT COMPOUND	Brown/White Fibrous Heterogeneous	10% Cellulose 2% Glass	88% Non-fibrous (Other)	None Detected
1229-54-Joint Compound 332225714-0055	BLDG B7, EAST WALL, S - DRYWALL WALL WITH JOINT COMPOUND	White Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
1229-54-Tape 332225714-0055A	BLDG B7, EAST WALL, S - DRYWALL WALL WITH JOINT COMPOUND	Beige Fibrous Homogeneous	90% Cellulose	10% Non-fibrous (Other)	None Detected
1229-54-Drywall	BLDG B7, EAST WALL, S - DRYWALL WALL WITH JOINT COMPOUND	Brown/White Fibrous Heterogeneous	10% Cellulose 2% Glass	88% Non-fibrous (Other)	None Detected
1229-55-Mastic 332225714-0056	BLDG B7, SOUTH WALL - DRYWALL WALL WITH JOINT COMPOUND	Yellow/Clear Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
1229-55-Joint Compound 332225714-0056A	BLDG B7, SOUTH WALL - DRYWALL WALL WITH JOINT COMPOUND				Layer Not Present
1229-55-Drywall	BLDG B7, SOUTH WALL - DRYWALL WALL WITH JOINT COMPOUND	Brown/White Fibrous Heterogeneous	10% Cellulose <1% Glass	90% Non-fibrous (Other)	None Detected
1229-56-Joint Compound 332225714-0057	BLDG B7, EAST WALL, N - DRYWALL WALL WITH JOINT COMPOUND	White Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
1229-56-Tape	BLDG B7, EAST WALL, N - DRYWALL WALL WITH JOINT COMPOUND	Beige Fibrous Homogeneous	90% Cellulose	10% Non-fibrous (Other)	None Detected
1229-56-Drywall 332225714-0057B	BLDG B7, EAST WALL, N - DRYWALL WALL WITH JOINT COMPOUND	Brown/White Fibrous Heterogeneous	10% Cellulose 2% Glass	88% Non-fibrous (Other)	None Detected
1229-57-Mastic 1	BLDG B7, NORTH - CARPET MASTIC	Yellow Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
1229-57-Leveler 332225714-0058A	BLDG B7, NORTH - CARPET MASTIC	Gray Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
1229-57-Mastic 2	BLDG B7, NORTH - CARPET MASTIC	Clear Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected

			Non-Asbe	Asbestos	
Sample	Description	Appearance	% Fibrous	% Non-Fibrous	% Туре
1229-58-Mastic	BLDG B7, NE DOORWAY -	Yellow/Clear Non-Fibrous		100% Non-fibrous (Other)	None Detected
332225714-0059	CARPET MASTIC	Homogeneous			
1229-58-Leveler 332225714-0059A	BLDG B7, NE DOORWAY - CARPET MASTIC	Gray Non-Fibrous		100% Non-fibrous (Other)	None Detected
		Homogeneous			New Data to 1
1229-59-Mastic 332225714-0060	BLDG B7, SW DOORWAY - CARPET MASTIC	Yellow/Clear Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
1229-59-Leveler 1	BLDG B7, SW DOORWAY -	Gray Non-Fibrous		100% Non-fibrous (Other)	None Detected
332225714-0060A	CARPET MASTIC	Homogeneous			N 5777
1229-59-Leveler 2 332225714-0060B	BLDG B7, SW DOORWAY - CARPET MASTIC	White Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
1229-60-Mastic 1	BLDG B7, WEST WALL -	Beige Non-Fibrous		100% Non-fibrous (Other)	None Detected
332225714-0061	BASEBOARD	Homogeneous			
1229-60-Mastic 2	BLDG B7, WEST WALL -	Tan Non-Fibrous		100% Non-fibrous (Other)	None Detected
332225714-0061A	BASEBOARD MASTIC	Homogeneous			
1229-61-Mastic 1	BLDG B7, NORTH WALL -	Beige Non-Fibrous		100% Non-fibrous (Other)	None Detected
332225714-0062	BASEBOARD MASTIC	Homogeneous			
1229-61-Mastic 2	BLDG B7, NORTH WALL -	Tan Non-Fibrous		100% Non-fibrous (Other)	None Detected
332225714-0062A	BASEBOARD MASTIC	Homogeneous			
1229-62	BLDG B7, EAST WALL -	Beige Non-Fibrous		100% Non-fibrous (Other)	None Detected
332225714-0063	BASEBOARD	Homogeneous			
1229-63	BLDG B7, SE METAL SINK - SINK	Gray Non-Fibrous		100% Non-fibrous (Other)	None Detected
332225714-0064	UNDERCOAT	Homogeneous			
1229-64	BLDG B7, SE METAL SINK - SINK	Gray Non-Fibrous		100% Non-fibrous (Other)	None Detected
332225714-0065	UNDERCOAT	Homogeneous			
1229-65-Sink Undercoat	BLDG B7, SW METAL SINK - SINK	Gray Non-Fibrous	3% Cellulose	97% Non-fibrous (Other)	None Detected
332225714-0066	UNDERCOAT	Homogeneous			
1229-65-Sealant	BLDG B7, SW METAL SINK - SINK	Beige Non-Fibrous		100% Non-fibrous (Other)	None Detected
332225714-0066A	UNDERCOAT	Homogeneous			

5431 Industrial Drive Huntington Beach, CA 92649 Tel/Fax: (714) 828-4999 / (714) 828-4944 http://www.LATesting.com / gardengrovelab@latesting.com LA Testing Order: 332225714 Customer ID: 32CONV56 Customer PO: 221616401 Project ID:

Analyst(s) Alexis Rodriguez (25) Irene Chang (17) Kaylin Luciani (14) Mindy Le (28) Rammy Nasry (18)

Char nickae

Michael Chapman, Laboratory Manager or Other Approved Signatory

LA Testing maintains liability limited to cost of analysis. Interpretation and use of test results are the responsibility of the client. This report relates only to the samples reported above, and may not be reproduced, except in full, without written approval by LA Testing. LA Testing bears no responsibility for sample collection activities or analytical method limitations. The report reflects the samples as received. Results are generated from the field sampling data (sampling volumes and areas, locations, etc.) provided by the client on the Chain of Custody. Samples are within quality control criteria and met method specifications unless otherwise noted. The above analyses were performed in general compliance with Appendix E to Subpart E of 40 CFR (previously EPA 600/M4-82-020 "Interim Method") but augmented with procedures outlined in the 1993 ("final") version of the method. This report not be used by the client to claim produc certification, approval, or endorsement by NVLAP, NIST or any agency of the federal government. Non-friable organically bound materials present a problem matrix and therefore LA Testing recommends gravimetric reduction prior to analysis. Unless requested by the client, building materials manufactured with multiple layers (i.e. linoleum, wallboard, etc.) are reported as a single sample. Estimation of uncertainty is available on request.

Samples analyzed by LA Testing Huntington Beach, CA NVLAP Lab Code 101384-0, CA ELAP 1406

Initial report from: 01/09/2023 11:28:26

Asbestos Chain of Custody LA Testing Order Number (Lab Use Only): # 3 3 2 2 2 5 6 8 9

			LA To	sting-Bill to: X Same	Different	
Company : Converse	Consultants			is Different note instructions in		
Street: 717 S. Myrtle A	Avenue		Third Party Bill	ing requires written authoriz	ation from third party	
City: Monrovia	St	ate/Province: CA	Zip/Postal Code: 9	Zip/Postal Code: 91016 Country: USA		
Report To (Name): La	aura Tanaka		Fax #:			
Telephone #: (626) 8	07-3422		Email Address: I	tanaka@conversecons	sultants.com	
Project Name/Numbe						
Please Provide Resu		Email Purchase Orde		U.S. State Samples T	aken: CA	
		Turnaround Time (TAT)				
*For TEM Air 3 hours throu	Hour 24 H Igh 6 hours, please call	I ahead to schedule.*There is	a premium charge for 3 H	96 Hour 1 W	vel II TAT. You will be asked	
	form for this service. A	TEM _ Air C A.	5hr TAT (AHERA only)	TEM- Dust	the Analytical Price Guide.	
PCM - Air □ NIOSH 7400				Microvac - AS	TM D 5755	
Ξ			R, Fall 703			
w/ OSHA 8hr. TWA		□ NIOSH 7402		Wipe - ASTM I	and the second	
PLM - Bulk (reporting		EPA Level II			tion (EPA 600/J-93/167)	
PLM EPA 600/R-93		SO 10312		Soil/Rock/Vermic		
PLM EPA NOB (<1	%)	TEM - Bulk			5 - A (0.25% sensitivity)	
Point Count		TEM EPA NOE			5 - B (0.1% sensitivity)	
□ 400 (<0.25%) □ 10		□ NYS NOB 198.	4 (non-friable-NY)		5 - B (0.1% sensitivity)	
Point Count w/Gravime		Chatfield SOP			5 - C (0.01% sensitivity)	
400 (<0.25%) 10			lysis-EPA 600 sec. 2		Semi-Quantitative)	
NYS 198.1 (friable	in NY)	TEM - Water: EF	PA 100.2	EPA Protocol (Quantitative)	
NYS 198.6 NOB (n	on-friable-NY)	Fibers >10µm	Waste Drinking	Other:		
□ NIOSH 9002 (<1%)	All Fiber Sizes	Waste Drinking			
		or Positive Stop - Cl	early Identify Hom	ogenous Group	0	
Samplers Name: Rod	ney Stansfield		Samplers Signati	Ire: Nolney	Stoufier	
Sample #		Sample Descriptio	n	Volume/Area (Ai HA # (Bulk)	r) Date/Time Sampled	
	SEE ATTACHED			SEE ATTACHED	12/27/22	
Client Sample # (s):	4010	0.01) -	12/22	/ Total # of Samples	s:	
Relinquished (Client)	: Ral Ston	Date:	12/27/	122 T	me: 2040	
Received (Lab): Jon	athan Santa	ore (Db) V Date:	12/28/22	Т	me: San	
Comments/Special In	structions:	1-				
		Page 1 of p	ages			
		p				

Controlled Document - Asbestos COC - R2 - 1/12/2010

	BULK SAMPLE		0DC	
Project Name: Project No.	22-16-1/11 11	Collected By:	RUS 12/27,	122
	IS MATERIAL: Plasticized Roa			<u> </u>
Sample Number	Sample Location/Description	Approx. Area (Sq Ft or LF)	Friable or Non-friable	Intact or Damaged
1227-01	Blog BB, Roof, North	2000	NF	Int
227-02	, , SE			
1227-03	- , , , West		\checkmark	Ţ
				-3
4				
dditional Co	Edge mastic is 5	toque or	rev und	d base
	Eage mastic is >	mone.		
			2	

	Auburndale MS # 22-16-164-01	Collected By:	2/27/	22
Sample Number	Sample Location/Description	Approx. Area (Sq Ft or LF)	Friable or Non-friable	Intact or Damaged
227-04	Bldg BI/B3, Roof, North	3,600	NF	Jh+
127-\$5	, , SE			
227-06	V, V, SW		1	
Additional Co	omments: on wood base,			

Conv	verse Consultants	Monrovia, CA 91016 C	176 Pullman St. osta Mesa, CA 714) 444-9660			ll Blvd. Suite 10 ca, CA 91730 544
		BULK SAMPLE	LOG			
Project Name	: Aubernd	ale MS	Collected	ву: <u></u>	PS	
Project No	22-16-1	64-01	D	ate: 12	2/27/2	2
OMOGENEO	us material: Per	retration Ma	stic			
Sample Number	Sample Lo	ocation/Description	Approx (Sq Ft		Friable or Non-friable	Intact or Damaged
027-07	BILLY BI/B3	s, Roof, North Edi	ye 130)	NF	In-
1227-08		, , SE				
1227-09		, , SW		(\checkmark	\downarrow
	0					

	Auburndale MS	06		
		Collected By:	DS	
110,000110	22-16-164-01		2/27/2	22
HOMOGENEOUS	SMATERIAL: Roof Core			
Sample Number	Sample Location/Description	Approx. Area (Sq Ft or LF)	Friable or Non-friable	Intact or Damaged
1227-10 E	312g B4/B6, Roof, East	3,600	NF	Int
1227-11	, , Center			
1227-12	, , Center , , , West	\downarrow		Ţ

Additional Comments:

	BULK SAMPLE L		10-	
	Auburndale MS			
Project No.	22-15-164-01	Date:	2/27/	22
Sample Number	Sample Location/Description	Approx. Area (Sq Ft or LF)	Friable or Non-friable	Intact or Damaged
227-\$3	Bldg B4/B6, Roof, East	130	NF	Int
1227-14	Blog B4/B6, Rost, Easy South			
227-15	V, V, North			\downarrow
22				
	omments: Rost edges			
dditional Co				

	: 12-16-164-01 ISMATERIAL: Derk Grey Pen	And a first an end of the manufacture and	Friable or	122 tic Intact or
Sample Number	Sample Location/Description	Approx. Area (Sq Ft or LF)	Non-friable	Damaged
227-16	Blog B4/BG, Roof SE	20	NF	Int
227-17	Blog B4/B6, Roof, SE , , South			
1227-14				
	V) V) SW	V	V	
dditional Co	omments: South Roof Eda	e, With	gravel	
) .	

derID: 332225689 # 5 5 2 2 5 6 8 9			
Converse Consultants 717 S. Myrtle Avenue 317 Monrovia, CA 91016 Cost	sta Mesa Office 76 Pullman St., Suite 108 sta Mesa, CA 92626 4) 444-9660		ill Blvd. Suite 104 ca, CA 91730
BULK SAMPLE	LOG		
Project Name: <u>Auburndale MS</u>	Collected By:		/
Project No.: 22-16-164-01	Date:	2/27/	22
HOMOGENEOUS MATERIAL: ROOF COVE			
Sample Sample Location/Description	Approx. Area (Sq Ft or LF)	Friable or Non-friable	Intact or Damaged
1227-19 Blog B7, Roof, North	1,5,75	NF	Int
1227-20 , , East			
1227-21 , , SW			
		1	
Additional Comments: Rolled Roofing Most mastic in	on wood	bese.	
Most mastil i	s non-su	spect "	not mop"
			,
45×35			

Conv	erse Consultants 71	7 S. Myrtle Avenue 3176 onrovia, CA 91016 Cost	ta Mesa Office 5 Pullman St., Suite 108 ta Mesa, CA 92626) 444-9660		ill Blvd. Suite 104 ca, CA 91730
Project No	Auburnda 22-16-1 US MATERIAL: Blac	64-01	Collected By:	2/27/	22
Sample Number	Sample Locatio	n/Description	Approx. Area (Sq Ft or LF)	Friable or Non-friable	Intact or Damaged
227-72	Bldg B7, Ro.	of, East	30	NF	Int
227-23	, (, Center			
227-24	V , V	, Center, Center			V
dditional C	omments: with	gravel. S	poradic		

0		ta Mesa, CA 92626) 444-9660	(909) 796-0	ca, CA 91730 544
	BULK SAMPLE I	LOG	0	
	Auburndale MS	Collected By:		
	22-16-164-01		12/27,	172
OMOGENEOU	SMATERIAL: Exterior Concre	te slæb	1	
Sample Number	Sample Location/Description	Approx. Area (Sq Ft or LF)	Friable or Non-friable	Intact or Damaged
227-25	Between Blog B7 and B8	11,000	NF	Int
227-26	courtpard, center			
227-27	Porch, in front of Room B2			V
	C11 /1 1			
dditional Co	be similar concre	porches	appear	to
	De similar concre			

Project No.:	Auburndale MS 22-10-104-01 MATERIAL: Carpet Mastic	Collected By:	12/27,	122
Sample Number	Sample Location/Description	Approx. Area (Sq Ft or LF)	Friable or Non-friable	Intact or Damaged
1227-28	Bldg B8, SE Doorway	3.5	NF	GINT
1227-29	BIDZER, SE Doorway , NW Doorway V, NW Doorway			
1227-30	V, NW Poorway			V
2				
	1			
dditional Cor	mments: UNDER Carpet	50 ugre	s on w	pd 660
(nments: Under carpet emainder &f carpe clear adhesive or	h w o d c	y,	isper

	Sample Location/Desc	erd Mæs	TIC Approx. Area	2/27 Friable or	Intact or
Number			(Sq Ft or LF)	Non-friable	Damageo
0 27 20	Blog B8, South		73	NF	Int
1227-32	, wes	t wall th Wall			
121-33	V, Nor	th Wall	\checkmark	V	\checkmark
dditional C	is non-sc	ric Wall-	-board	- Base	boald
	15 NON- 50	ispect	vingl.		

rderID: 3322 #33	2225689			
Conv	verse Consultants 717 S. Myrtle Avenue 3176 Monrovia, CA 91016 Costa	a Mesa Office Pullman St., Suite 108 a Mesa, CA 92626 444-9660		ll Blvd. Suite 104 ca, CA 91730
	BULK SAMPLE L	.OG		
Project Name	Auburndale MS	Collected By:	RDS	
Project No	22-16-164-01	Date:	12/27,	122
HOMOGENEO	US MATERIAL: Drywall Walls	5		
Sample Number	Sample Location/Description	Approx. Area (Sq Ft or LF)	Friable or Non-friable	Intact or Damaged
1227-34	Bldg B8, East wall, South	1,800	NF	Int
1227-35	, East well			
1227-36	, NE corner			
1227-37	NWCorner			1
1227-38	, west wall	\checkmark	Ţ	\checkmark
Additional C	comments: Behind woven f Compound obse - Suspended ceiliv - Above suspended insulation, wood	Eiberbag	rd, No	joint
	compound obse	erved.	aralase	Ando
	- Above Suspended	Ceiling	- Fiber	glass
	insulation, wood	deck,	plastic	HVAC
	and conduits.			
		RX))	

Asbestos Chain of Custody LA Testing Order Number (Lab Use Only):

#332225714

LA TESTING **520 MISSION STREET** S. PASADENA, CA 91030 PHONE: (323) 254-9960 FAX: (323) 254-9982

Company : Converse C	Consultants			ng-Bill to: X Same			
Street: 717 S. Myrtle Av	venue		Third Party Billing	requires written authorizati	on from third party		
City: Monrovia	S	tate/Province: CA	Zip/Postal Code: 910		ntry: USA		
Report To (Name): Lau	ura Tanaka		Fax #:				
Telephone #: (626) 80			Email Address: Itan	aka@converseconsul	tants com		
Project Name/Number:			Email Address. Itali	aka@converseconsul	ants.com		
Please Provide Result		Email Purchase Orde	r: 221616401 U	.S. State Samples Tak	en: CA		
		Turnaround Time (TAT)					
3 Hour 6 H		Hour 🛛 🕁 48 Hour	2 72 Hour	96 Hour X 1 Week			
*For TEM Air 3 hours throug to sign an authorization for	h 6 hours, please ca m for this service.	II ahead to schedule.*There is a Analysis completed in accordar	a premium charge for 3 Hour ace with LA Testing's Terms a	TEM AHERA or EPA Level I and Conditions located in the	I TAT. You will be asked Analytical Price Guide		
PCM - Air			5hr TAT (AHERA only)	TEM- Dust	r manj troar r moo o andor		
NIOSH 7400		AHERA 40 CF	R, Part 763	Microvac - ASTM	D 5755		
w/ OSHA 8hr. TWA		□ NIOSH 7402		Wipe - ASTM D64	480		
PLM - Bulk (reporting I	imit)	EPA Level II		Carpet Sonication	(EPA 600/J-93/167)		
PLM EPA 600/R-93/1	116 (<1%)	□ ISO 10312		Soil/Rock/Vermiculi	ite		
PLM EPA NOB (<1%)	TEM - Bulk		PLM CARB 435 -			
Point Count	1	TEM EPA NOB	3	PLM CARB 435 -			
□ 400 (<0.25%) □ 100	00 (<0.1%)	NYS NOB 198.	4 (non-friable-NY)	TEM CARB 435 -			
Point Count w/Gravimet	ric	Chatfield SOP		TEM CARB 435 -	C (0.01% sensitivity)		
□ 400 (<0.25%) □ 100	00 (<0.1%)	TEM Mass Ana	TEM Mass Analysis-EPA 600 sec. 2.5		mi-Quantitative)		
NYS 198.1 (friable in	n NY)	TEM - Water: EP	TEM - Water: EPA 100.2		antitative)		
NYS 198.6 NOB (no	n-friable-NY)	Fibers >10µm	Fibers >10µm				
□ NIOSH 9002 (<1%)		All Fiber Sizes	Waste Drinking				
	Check F	For Positive Stop - Cl	early Identify Homog	enous Group	0		
Samplers Name: Rodn	ey Stansfield		Samplers Signature	Beste	ufield		
Sample #		Sample Descriptio		Volume/Area (Air) HA # (Bulk)	Date/Time Sampled		
		Sample Descriptio		HA # (Bulk)	1268/		
	SEE ATTACHED			SEE ATTACHED	14/27		
		\wedge					
Client Sample # (s):	n no.	(A) -	12/1	Total # of Samples:	1015		
Relinquished (Client):	Real St	any in Date:	12/29/	22 Time	1913		
Received (Lab): EM	ily mendor	1 Wix MIDB	12/30/22	Time	8BM		
Comments/Special Inst		VO Date:	1-10-10-	TIME			
		0					
		Page 1 of 7 p	2005				
			ayes				

Controlled Document - Asbestos COC - R2 - 1/12/2010

Page 1 Of 21 OrderID: 332225714

Conv	verse Consultants					ill Blvd. Suite 104 ca, CA 91730	
	32225714			OG			
Project Name	. Auburndalt	MS		Collected By:	205		
Project No	22-16-	164-01		Date:	12/29,	122	
HOMOGENEO	US MATERIAL: Con	ivete S	(46				
Sample Number	Sample Locati	on/Description		Approx. Area (Sq Ft or LF)	Friable or Non-friable	Intact or Damaged	
1229-01	SW Parking, L	vest	Ĩ	21,900	NF	Int	
1229-02)	SE					
1229-93	V)	North		V		\bigvee	

Additional Comments:

186×118

	rse Consultants 717 S. Myrtle Avenue 31 Monrovia, CA 91016 Co	sta Mesa Office 76 Pullman St., Suite 108 sta Mesa, CA 92626 14) 444-9660		ll Blvd. Suite 104 ca, CA 91730
	Auturndale MS	Collected By:	2PS	/
	22-16-164-01 MATERIAL: ASPhalt	Date:	2/29/	72
Sample Number	Sample Location/Description	Approx. Area (Sq Ft or LF)	Friable or Non-friable	Intact or Damaged
1229-04	SW, Parking, South	11,200	NF	Int
1229-05	SW Parking, South , West			
1229-86	South of Bldgs B4/B6 + B7		\checkmark	\checkmark
and a start of				
Additional Cor	nments: No Fabric Laye	er obser	ved,	
118×80))+(120×15)			

184×120

NOOL	2 2 5 7 1 4 (626) 930-1200	(714) 444-9660	(909) 796-0	
	Auburndale MS	Collected By:		
Project No.:	22-16-164-01	Date:	2/29/-	22
	naterial: Coated Concre	ete Slabs		
Sample Number	Sample Location/Description	Approx. Area (Sq Ft or LF)	Friable or Non-friable	Intact or Damaged
	ennis Courts, West	22,080	NF	Int
229-68	, Worth			
229-09	, west			
		V		
-				
dditional Com	mante: Red of allogan /a	ating - Saug	e Compies	former
	ments: Red or green Loc	et ing sad	e consist	rency

120×33

Project No	: Aceburndole MS : 22-16-164-01 JS MATERIAL: Concrete Slab	Collected By:	12/29.	/72
Sample Number	Sample Location/Description	Approx. Area (Sq Ft or LF)	Friable or Non-friable	Intact or Damaged
229-10	Bitte Reectis, 5	3,560	NF	Int
229-11				
229-12	, SW , Center			V
ditional C	omments: Adjacent to Ten	mis Lourts	-	

Page 5 Of 21

	Sample Location/	Description	Approx. Area (Sq Ft or LF)	Friable or Non-friable	Intact o Damage
229-13 f	atches near T	eunis Courts SE	380	NF	In-
229-14					
1229-15					
dditional Com	ments: Next to	Bike Rach	45		

Conv	Monrovia	rtle Avenue 3176 CA 91016 Cost	a Mesa Office Pullman St., Suite 108 a Mesa, CA 92626	Rancho Cuc	l Blvd. Suite 104 a, CA 91730
#33	2 2 2 5 7 1 4 ^{(626) 930}	-1200 (714)) 444-9660	(909) 796-05	544
Proiect Name	Auburndale		Collected By:	205	
	72-16-16-			2/29	127
	JS MATERIAL: CONCUETE				
Sample Number	Sample Location/Desc		Approx. Area (Sq Ft or LF)	Friable or Non-friable	Intact or Damaged
29-16	Bldg B1/B3, Foundat	ion, East, N	2700*	NF	Int
29-17)	, East, S			
129-18	, , , , , , , , , , , , , , , , , , ,	, South	\checkmark		
				Ý	
ditional C	omments: *60 sq t Rest is bar	et on eas	t and south	h perimet	er only.
10×30	>				

	verse Consultants 717 S. Myrtle Avenue 3 Monrovia, CA 91016	Costa Mesa Office 3176 Pullman St., Suite 108 Costa Mesa, CA 92626 714) 444-9660		ll Blvd. Suite 104 a, CA 91730
	BULK SAMPL			
Project Nam	e: <u>Auburndale MS</u>	Collected By:	205	
Project N	0: 22-16-164-01	Date:	12/29/	22
HOMOGENEO	US MATERIAL: Concrete Slab with	Strim Coget	*	
Sample Number	Sample Location/Description	Approx. Area (Sq Ft or LF)	Friable or Non-friable	Intact or Damaged
1229-19	Blog B4/B6, Foundation, South,	w 2700*	NF	Int
12-9-20	, South,	Ē		
1229-21	y , South, , V) y , East	\checkmark		\downarrow
			,	
Additional (Comments: $*60$ Sq. ft. of	skim Cogt	on sou	th and
	Comments: * 60 Sq. ft. of Cast perimeter Dare Concrete	ouls. Re	main der	i's
	Dare Concrete	7		
96X3	30			
	τ			

	22-16-164-01 SMATERIAL: 2XH Fissured C	Date:		122
Sample Number	Sample Location/Description	Approx. Area (Sq Ft or LF)	Friable or Non-friable	Intact or Damaged
129-22 6	sldg BI/B3, Run Bl, West	2700	F	Int
229-23	, Run B2, South RS			
1729-24	V , Rm B3, East	\downarrow	X	ł
	11		. 61	1
dditional Co	Ments: A boue ceiling : L	ford dec	HUAC d	loss Luct
	bentet insulation Covers, plastic co	and with	1.0.0	~~~~
	, [
	$p(e) \neq ic$	end letts		

Project No.:	Auburndale MS 22-16-164-01 MATERIAL: Drpucoll Walls	Collected By:/ Date:	RDS 12/29,	122
Sample Number	Sample Location/Description	Approx. Area (Sq Ft or LF)	Friable or Non-friable	Intact or Damaged
+29-25 B	slog BI/B3, Run BI, West Wall	3,600	NF	Int
229-26	, , South Well			
229-27	s Rm BZ, North Wall			
224-28	, Run B3, East Wall			
229,-29	, , , North, West	V	\checkmark	\checkmark
-				
ditional Com	ments: No joint comp Behind Wood (Wall - board.	ound o cellulos	bserve e fæbri	d. C

Conv	verse Consultants	Monrovia Office 717 S. Myrtle Avenue Monrovia, CA 91016 (626) 930-1200	Costa Mesa 3176 Pullma Costa Mesa (714) 444-96	n St., Suite 108 , CA 92626		ll Blvd. Suite 104 a, CA 91730
#	3 3 2 2 2 5 7 1				(000) 700 0	
Project Name	: Auburnd	ele MS	Collec	cted By:	RDS	
Project No	22-16	-164-01		Date:	2/29/	22
HOMOGENEO	US MATERIAL: BO	seboard 1	Mastic			
Sample Number	Sample Lo	ocation/Description		prox. Area q Ft or LF)	Friable or Non-friable	Intact or Damaged
1229-3\$	Bldg Bl/B	3, Rm BI, Wa	est 1	20	NF	Int
1229-31		, Run BZ, Ea	54			
1229-32	\checkmark	, Rm BZ, East , Rm B3, East	,5	\checkmark		
Additional C	Comments: On Base	fabric (co	ellulose Non-si) reall	board vinyl.	\$
					1	

	verse Consultants 71	onrovia Office 7 S. Myrtle Avenue onrovia, CA 91016 26) 930-1200	3176 Costa (714)	Mesa Office Pullman St., Suite 108 Mesa, CA 92626 444-9660		ll Blvd. Suite 104 ca, CA 91730
Project Name	: Acuburndale	BULK SAN		OG Collected By:	205	
	22-16-164				2/29/	122
	US MATERIAL: Carpe		ng t	Mastic		
Sample Number	Sample Location/Description Bldg Bl/B3, Rm Bl, SW			Approx. Area (Sq Ft or LF)	Friable or Non-friable	Intact or Damaged
[229-33				27,00	NF	Int
1229-34	-	BZ, East	st			
1229-35	J SRU	n 83, SE	-		V	Ļ
	5					
dditional (Comments: ໑ໞ ພ	ood Ela	or þ	250		

Conv	verse Consultants717 S. Myrtle Avenue Monrovia, CA 910163176 Cost	ta Mesa Office 6 Pullman St., Suite 108 ta Mesa, CA 92626) 444-9660		ll Blvd. Suite 10 ca, CA 91730
#3	3 3 2 2 2 5 7 1 4 BULK SAMPLE I		(909)790-0	044
Project Name	Auburndale MS	Collected By:	RDS	
Project No	22-16-164-01	Date:	2/29	122
HOMOGENEOU	JS MATERIAL: Z × 4 Fissure.	l Ceiling	THES	Penels
Sample Number	Sample Location/Description	Approx. Area (Sq Ft or LF)	Friable or Non-friable	Intact or Damaged
1229-35	Oldz B4/06, Rm B4, NE	2700	F	Int
122936	, Rm B5, South			
1229-37	, RmB6, South	1		
	1			
	11 2 414	1	1, 0	200
Additional C	omments: Above Ceiling: blanket insulation plastic conduit	wood d	eck, t	ibergles
	plastic conduit	ts	TC COVE	(13)
-				

verse Consultants 717 S. Myrtle Avenue 3176 Monrovia, CA 91016 Costa	Pullman St., Suite 108 Mesa, CA 92626		ill Blvd. Suite 104 ca, CA 91730
	.OG		
: Auburndale MS	Collected By:	RDS	
22-16-164-01	Date:	12/29	1/22
US MATERIAL: Drywall walls			
<i>i</i> Sample Location/Description	Approx. Area (Sq Ft or LF)	Friable or Non-friable	Intact or Damaged
Bldg B4/B6, Run BH, Eastwell, N	3,600	NF	Fut
, South Wall			
, RmB5, South Wall			
, RmBG, South well			-
V, V, East wall	\checkmark		V
	Verse Consultants 322225714 BULK SAMPLE L $3176 \\ Costa (626) 930-1200$ BULK SAMPLE L BULK SAMPLE L BULK SAMPLE L $3176 \\ Costa (714) BULK SAMPLE L 3176 \\ Costa (714) BULK SAMPLE L 3176 \\ Costa (714) BULK SAMPLE L Sample Location/Description BL2g B4/B6, RM B4, East Well, N 1, South Wall, Rm B5, South Wall, Rm B6, South Wall$	Verse Consultants $717 \text{ S. Myrtle Avenue}Monrovia, CA 91016}(626) 930-12003176 \text{ Pullman St., Suite 108}Costa Mesa, CA 92626(714) 444-9660BULK SAMPLE LOGBULK SAMPLE LOGa:Auburndale MSCollected By:b:72 - 16 - (64 - 01)Date:US MATERIAL:DrywallUallsBully B4/B6, Rm B4, East well, N3,600, RmB5, South Wall, RmB5, South Wall$	Verse Consultants717 S. Myrtle Avenue Monrovia, CA 91016 $(626) 930-1200$ 3176 Pullman St., Suite 108 Costa Mesa, CA 92626 $(714) 444-9660$ 8333 Footh Rancho Cuu $(909) 796-0$ BULK SAMPLE LOGBULK SAMPLE LOGa:Auburn daleMScollected By:RDScollected By:RDScollected By:RDSDi:Collected By:RDScollected By:RDSDi:Collected

Additional Comments:

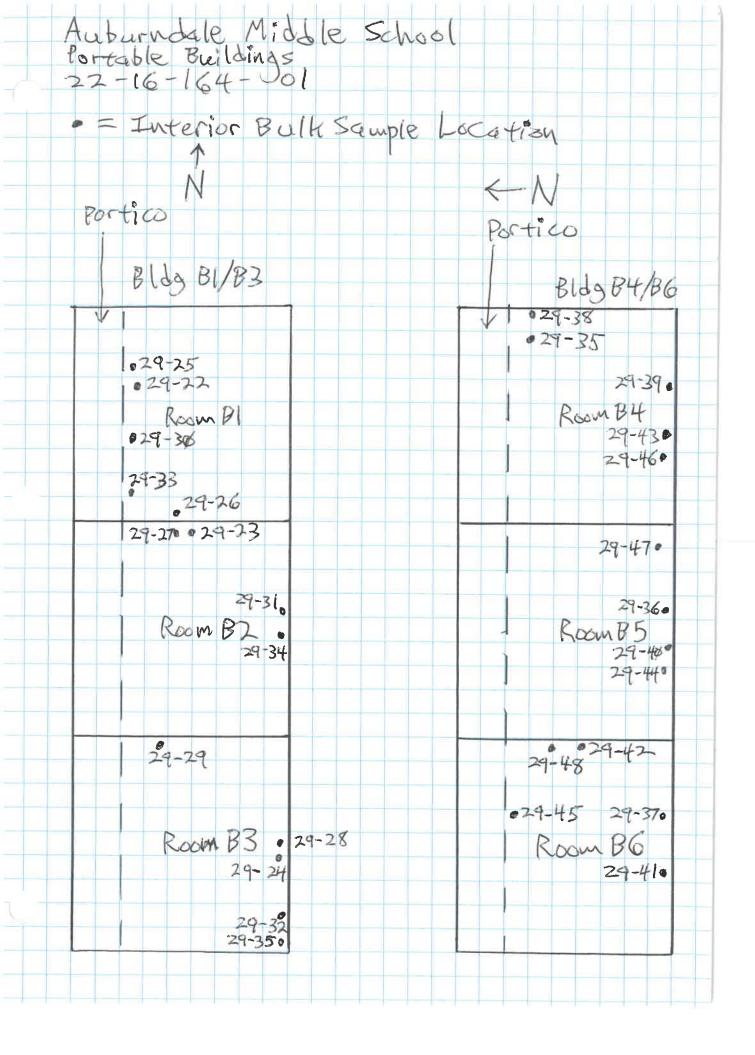
	Verse Consultants 717 S. Myrtle Avenue 3176 Monrovia, CA 91016 Cost	a Mesa Office Pullman St., Suite 108 a Mesa, CA 92626) 444-9660		ll Blvd. Suite 104 a, CA 91730
Project No	us material: Boseboard Masti	Collected By:	RDS 12/29	122
Sample Number	Sample Location/Description	Approx. Area (Sq Ft or LF)	Friable or Non-friable	Intact or Damaged
1229-43	Bldg B4/B6, Rm B4, South	120		Int
1229-44	, Rm B5, South			
1229-45	V, Run BG, Est Ro		\downarrow	Y
Additional C	Comments: On fabric (cellu Baseboard is no	lose) un on-susp	ect v	inpl.

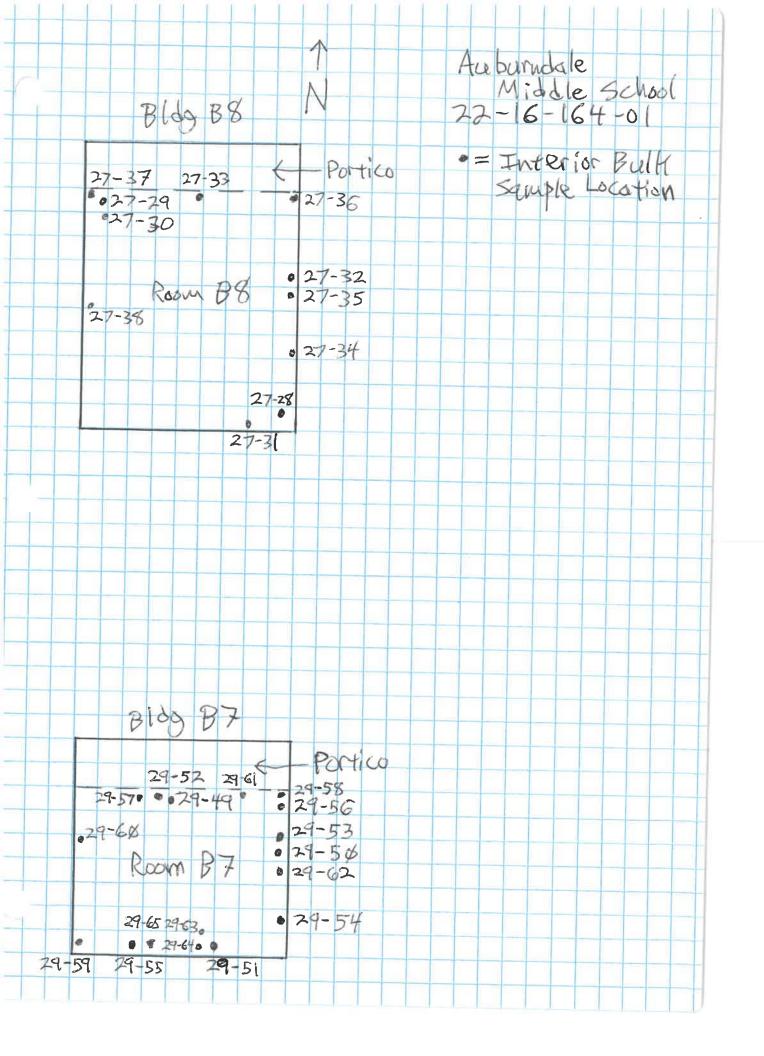
	/erse Consultants717 S. Myrtle Avenue Monrovia, CA 9101631 Co	osta Mesa Office 76 Pullman St., Suite 108 Osta Mesa, CA 92626 14) 444-9660		ll Blvd. Suite 104 a, CA 91730
Project Name	Auburndale MS	Collected By:	RDS	
	22-16-164-01		12/29/	27
Sample Number	US MATERIAL: Carpet Mastic Sample Location/Description	Approx. Area (Sq Ft or LF)	Friable or Non-friable	Intact or Damaged
1229-46	Bldg B4/B6, BRu B4, South	2700	NF	Int
1229-47	, RMB5, SE			
1229-48	, Run BG, East			V
Additional C	comments: On Wood bas	5 C		

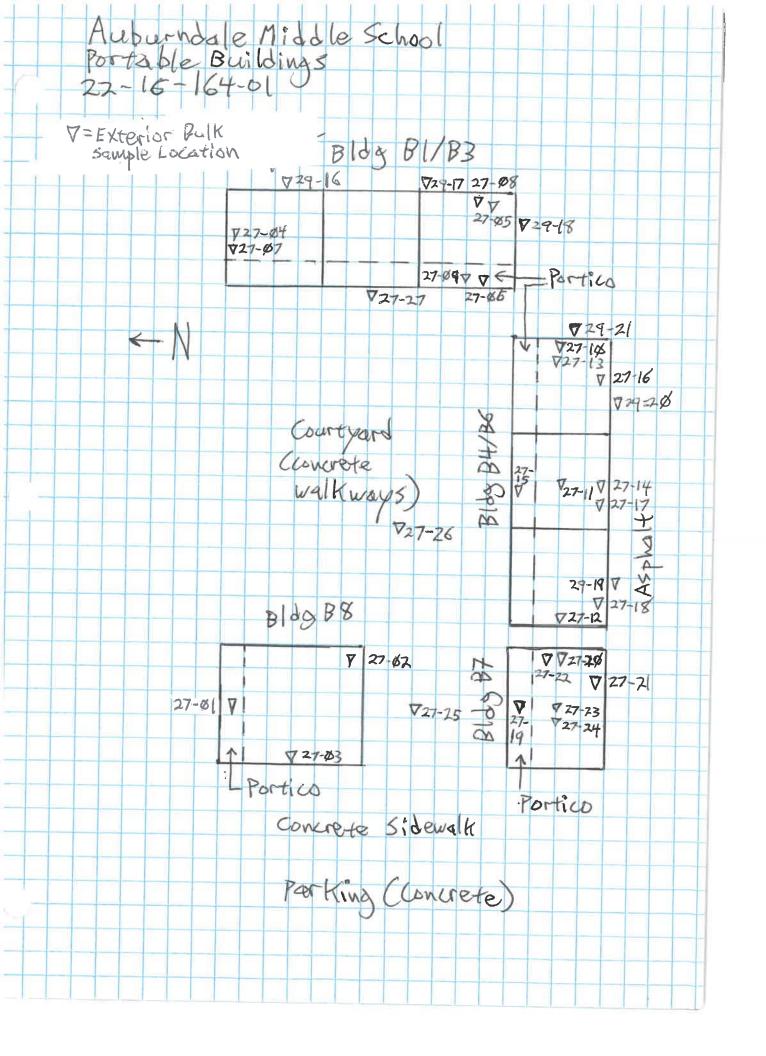
	Verse Consultants 717 S. Myrtle Avenue Monrovia, CA 91016	Costa Mesa Office 176 Pullman St., Suite 108 Costa Mesa, CA 92626 714) 444-9660		ll Blvd. Suite 104 ca, CA 91730
Project Name	Auburndale MS	Collected By:	RD5	
	22-16-164-01	Date:	12/29	122
HOMOGENEO	US MATERIAL: 2×4 Fissured	Ceiling A	enels	
Sample Number	Sample Location/Description	Approx. Area (Sq Ft or LF)	Friable or Non-friable	Intact or Damaged
1229-49	Bldg B7, North	1,400	MEF	Int
1229-50	, East			
1229-51	, East V, South			V
Additional C	conduits.	od deck, (tuac cou	ciberglass ers, pla	bbntret stic
1				
11				
40×35				

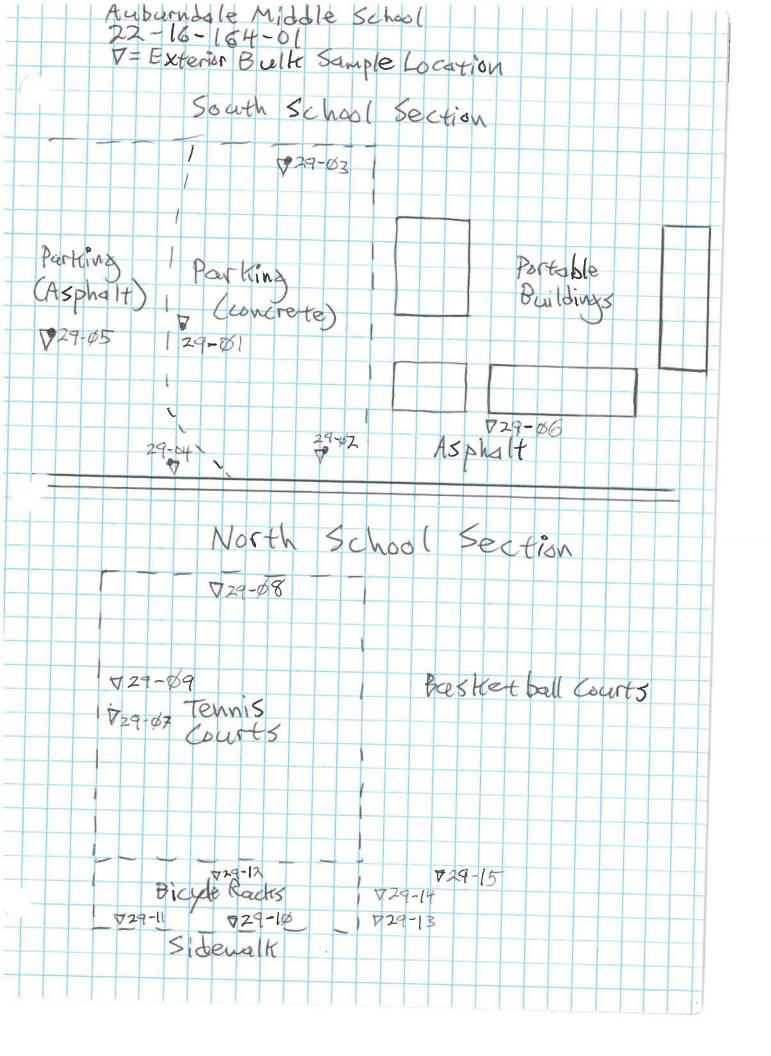
Converse # 3 3 2 2 2	Consultants	Monrovia Office 717 S. Myrtle Avenue Monrovia, CA 91016 (626) 930-1200 BULK SAM	3176 Costa (714)	Mesa, CA 444-9660	t., Suite 108		ill Blvd. Suite 104 ca, CA 91730
Project Name:	Auburna				ву: <u>R</u>	DS	
	22-16-					2/29/	22
IOMOGENEOUS MA	TERIAL: Dry	ruall Wa	lu	ith ?	Joint	Compou	nd
Sample Number	Sample Lo	cation/Description			x. Area or LF)	Friable or Non-friable	Intact or Damaged
1229-52 E	Fldg B	7, Abrth w	all	1,2	00	NF	Int
1229-53		, East We	all				
1229-54		, Seath Wel	\int				
1229-55		, South We	ell				
1229-56	V	, East well,	N				
						v	V
Additional Comm	Reh	ind celluk	. (0	Cib		II has	
Additional Comm	ents: 0 - v		2)0	TOP	ic u	All POS	ud *

	Verse Consultants Amonrovia Off 717 S. Myrtle Monrovia, CA (626) 930-12	Avenue 3176 91016 Cost	a Mesa Office 6 Pullman St., Suite 108 a Mesa, CA 92626) 444-9660		ill Blvd. Suite 104 ca, CA 91730	
# 3 3		K SAMPLE I	LOG			
Project Name	Auburndak M	15	Collected By:	RDS		
	22-16-164-		Date: (2/29/	22	
	us material: Carpet					
Sample Number	/ Sample Location/Descrip		Approx. Area (Sq Ft or LF)	Friable or Non-friable	Intact or Damaged	
1229-57	Bldg B7, Nort	7, North		NF	Int	
1229-58	, NED	conuray				
1229-59	, NED	borway			V	


-


Additional Comments:


Conv # 3 3	Verse Consultants 717 S. Myrtle Avenue 31 Monrovia, CA 91016 Co	osta Mesa Office 76 Pullman St., Suite 108 osta Mesa, CA 92626 14) 444-9660		ll Blvd. Suite 104 ca, CA 91730
	BULK SAMPLE	LOG		
Project Name	: Auburndale MS	Collected By:	205	
	2-16-164-01		2/29/	22
HOMOGENEO	us material: Baseboard Mas	stic		
Sample Number	Sample Location/Description	Approx. Area (Sq Ft or LF)	Friable or Non-friable	Intact or Damaged
1229-6×	Bldg B7, West Wall	50	NF	Int
[229-6]	, North wall)
1229-62	V, East wall		\checkmark	V
Additional C	Comments: On fabric Cellu Baseboard is non-	lose una	11 poero]
	reserverd is won-	suspect	anyi	8
fano				


\odot	Converse Consultants Monrovia Office 717 S. Myrtle Avenue Monrovia, CA 91016 (626) 930-1200 Costa Mesa Office 3176 Pullman St., Suite 108 Costa Mesa, CA 92626 (714) 444-9660 Rancho Office 8333 Foothill Blvd. Suite 104 Rancho Cuca, CA 91730 (909) 796-0544										
10	BULK SAMPLE L	.OG									
Project Name	Auburndale MS	Collected By:	RDS								
Project No	22-16-164-01	Date:(2/29	1/22							
HOMOGENEO	US MATERIAL: Sink Underce	at									
Sample Number	Sample Location/Description	Approx. Area (Sq Ft or LF)	Friable or Non-friable	Intact or Damaged							
1229-63	Bldg B7, SE Metal Sink	16	NE	Int							
1229-64	, SE V										
1229-65	, SW Metal Sink	\checkmark	\checkmark	\checkmark							

Additional Comments:

Auburndale Middle School 1255 River Road, Corona, California January 30, 2023

LBP / LCM

XRF Summary Table Field Notes

Converse Project No. 22-16-164-01 Copyright 2023 Converse Consultants

Reading No.	Location	Location Detail	Component	Component Comment	Substrate	Side	Color	Condition	Pb Conc. (mg/cm ²)	Result
40				Calibration Check	κ				1.2	Positive
41				Calibration Check	ĸ				1.2	Positive
42				Calibration Check	ĸ				1.2	Positive
43	Bldg B8	Exterior	Gutter		Metal	North	Blue	Intact	-0.1	Negative
44	Bldg B8	Exterior	Downspout		Metal	North	Beige	Intact	0.1	Negative
45	Bldg B8	Exterior	Beam		Metal	North	Beige	Intact	0.1	Negative
46	Bldg B8	Exterior	Misc	Portico	Metal	North	Beige	Intact	0	Negative
47	Bldg B8	Exterior	Trim		Metal	North	Beige	Intact	0	Negative
48	Bldg B8	Exterior	Trim		Metal	North	Beige	Intact	0	Negative
49	Bldg B8	Exterior	Room	Wall	Wood	North	Beige	Intact	0.1	Negative
50	Bldg B8	Exterior	Pipe	Horizontal	Metal	North	Beige	Intact	0.1	Negative
51	Bldg B8	Exterior	Pipe	Vertical	Metal	North	Beige	Intact	-0.1	Negative
52	Bldg B8	Exterior	Pipe	Vertical	Metal	North	Beige	Intact	0.1	Negative
53	Bldg B8	Exterior	Window	Casing	Wood	North	Blue	Intact	-0.4	Negative
54	Bldg B8	Exterior	Pipe	Vertical	Metal	East	Beige	Intact	0.2	Negative
55	Bldg B8	Exterior	Trim		Metal	East	Beige	Intact	0.1	Negative
56	Bldg B8	Exterior	Fascia		Metal	East	Blue	Intact	0.2	Negative
57	Bldg B8	Exterior	Trim		Metal	East	Blue	Intact	0	Negative
58	Bldg B8	Exterior	Misc	Portico	Metal	East	Blue	Intact	0.1	Negative
59	Bldg B8	Exterior	Door		Metal	East	Blue	Intact	0	Negative
60	Bldg B8	Exterior	Door	Frame	Metal	East	Blue	Intact	0.1	Negative
61	Bldg B8	Exterior	Door	Casing	Wood	East	Blue	Intact	0	Negative
62	Bldg B8	Exterior	Fascia		Metal	South	Blue	Intact	0.2	Negative
63	Bldg B8	Exterior	Beam		Metal	South	Blue	Intact	0	Negative
64	Bldg B8	Exterior	Trim		Metal	South	Beige	Intact	0	Negative
65	Bldg B8	Exterior	I-Beam		Metal	South	Beige	Intact	0.2	Negative
66	Bldg B8	Exterior	Misc	Portico	Wood	South	Beige	Intact	-0.2	Negative
67	Bldg B8	Exterior	Room	Wall	Wood	South	Beige	Intact	0.2	Negative
68	Bldg B8	Exterior	Room	Wall	Metal	South	Beige	Intact	0	Negative
69	Bldg B8	Exterior	Vent		Metal	South	Beige	Intact	0	Negative
70	Bldg B8	Exterior	Misc	Portico	Metal	West	Blue	Intact	0	Negative
71	Bldg B8	Exterior	Misc	Portico	Metal	West	Beige	Intact	0	Negative

Converse Project No. 22-16-164-01

Dates of Inspection: 12/23, 27 2022 Inspector: R. Stansfield CDPH #4397

XRF Summary Table Auburndale Middle School

Reading No.	Location	Location Detail	Component	Component Comment	Substrate	Side	Color	Condition	Pb Conc. (mg/cm ²)	Result
72	Bldg B8	Exterior	Door		Metal	West	Blue	Intact	0	Negative
73	Bldg B8	Exterior	Door	Frame	Metal	West	Blue	Intact	0.2	Negative
74	Bldg B8	Exterior	Door	Frame	Wood	West	Blue	Intact	0	Negative
75	Bldg B8	Room B8	Beam		Metal		Black	Intact	-0.1	Negative
76	Bldg B8	Room B8	I-Beam		Metal		Black	Intact	0.1	Negative
77	Bldg B8	Room B8	Window	Casing	Metal	North	White	Intact	-0.1	Negative
78	Bldg B8	Room B8	Door	Frame	Metal	East	Blue	Intact	0	Negative
79	Bldg B8	Room B8	Window	Casing	Metal	South	White	Intact	0	Negative
80	Bldg B1/B3	Exterior	Fascia	ŭ	Metal	North	Blue	Intact	0	Negative
81	Bldg B1/B3	Exterior	Trim		Metal	North	Blue	Intact	0.1	Negative
82	Bldg B1/B3	Exterior	Room	Wall	Wood	North	Beige	Intact	0	Negative
83	Bldg B1/B3	Exterior	Room	Wall	Wood	North	Brown	Intact	0.1	Negative
84	Bldg B1/B3	Exterior	Misc	Roof	Plastic		Gray	Intact	0.1	Negative
85	Bldg B1/B3	Exterior	Trim		Metal	North	Brown	Intact	0	Negative
86	Bldg B1/B3	Exterior	Room	Wall	Wood	North	Beige	Intact	0	Negative
87	Bldg B1/B3	Exterior	Room	Wall	Wood	North	Brown	Intact	0	Negative
88	Bldg B1/B3	Exterior	Gutter		Metal	East	Beige	Intact	-0.1	Negative
89	Bldg B1/B3	Exterior	Downspout		Metal	East	Beige	Intact	0.1	Negative
90	Bldg B1/B3	Exterior	Beam		Metal	East	Beige	Intact	0.1	Negative
91	Bldg B1/B3	Exterior	Misc	Portico	Wood	East	Beige	Intact	0	Negative
92	Bldg B1/B3	Exterior	Room	Wall	Wood	East	Beige	Intact	0	Negative
93	Bldg B1/B3	Exterior	Window	Casing	Wood	East	Beige	Intact	0.1	Negative
94	Bldg B1/B3	Exterior	Electric Panel	Frame	Metal	East	Beige	Intact	0	Negative
95	Bldg B1/B3	Exterior	Pipe	Vertical	Metal	East	Beige	Intact	0.1	Negative
96	Bldg B1/B3	Exterior	Pipe	Vertical	Metal	East	Beige	Intact	0	Negative
97	Bldg B1/B3	Exterior	Electric Panel	Frame	Metal	East	Beige	Intact	0.1	Negative
98	Bldg B1/B3	Exterior	Pipe	Vertical	Metal	South	Beige	Intact	0	Negative
99	Bldg B1/B3	Exterior	Trim		Metal	South	Beige	Intact	0	Negative
100	Bldg B1/B3	Exterior	Vent		Metal	South	Beige	Intact	0.1	Negative
101	Bldg B1/B3	Exterior	Trim		Metal	West	Blue	Intact	0	Negative
102	Bldg B1/B3	Exterior	Beam		Metal	West	Beige	Intact	0	Negative
103	Bldg B1/B3	Exterior	Misc	Portico	Wood	West	Beige	Intact	-0.3	Negative

Reading No.	Location	Location Detail	Component	Component Comment	Substrate	Side	Color	Condition	Pb Conc. (mg/cm ²)	Result
104	Bldg B1/B3	Exterior	Room	Wall	Wood	West	Beige	Intact	0.1	Negative
105	Bldg B1/B3	Exterior	Room	Wall	Wood	West	Brown	Intact	0.1	Negative
106	Bldg B1/B3	Exterior	Door		Metal	West	Blue	Intact	-0.1	Negative
107	Bldg B1/B3	Exterior	Door	Frame	Metal	West	Blue	Intact	0.1	Negative
108	Bldg B1/B3	Exterior	Door	Casing	Wood	West	Beige	Intact	0	Negative
109	Bldg B1/B3	Exterior	Window	Casing	Wood	West	Blue	Intact	0	Negative
110	Bldg B1/B3	Exterior	Railing		Metal	West	Blue	Intact	0.3	Negative
111	Bldg B1/B3	Room B1	Window	Casing	Wood	East	Brown	Intact	-0.1	Negative
112	Bldg B1/B3	Room B1	I-Beam		Metal	South	Black	Intact	0.1	Negative
113	Bldg B1/B3	Room B1	I-Beam		Metal	South	Black	Intact	-0.1	Negative
114	Bldg B1/B3	Exterior	Stair	Treads	Concrete	West	Yellow	Intact	0.4	Negative
115	Bldg B4/B6	Exterior	Misc	Roof	Plastic		Gray	Intact	0.1	Negative
116	Bldg B4/B6	Exterior	Fascia		Metal	North	Blue	Intact	-0.1	Negative
117	Bldg B4/B6	Exterior	Beam		Metal	North	Blue	Intact	0.1	Negative
118	Bldg B4/B6	Exterior	Beam		Metal	North	Beige	Intact	-0.2	Negative
119	Bldg B4/B6	Exterior	Misc	Portico	Wood	North	Beige	Intact	-0.2	Negative
120	Bldg B4/B6	Exterior	Room	Wall	Wood	North	Beige	Intact	0	Negative
121	Bldg B4/B6	Exterior	Room	Wall	Wood	North	Brown	Intact	0.1	Negative
122	Bldg B4/B6	Exterior	Door		Metal	North	Blue	Intact	0	Negative
123	Bldg B4/B6	Exterior	Door	Frame	Metal	North	Blue	Intact	0	Negative
124	Bldg B4/B6	Exterior	Railing		Metal	North	Blue	Intact	0.1	Negative
125	Bldg B4/B6	Exterior	Stair	Treads	Concrete	North	Yellow	Intact	0.3	Negative
126	Bldg B4/B6	Exterior	Room	Wall	Wood	East	Beige	Intact	0	Negative
127	Bldg B4/B6	Exterior	Room	Wall	Metal	East	Beige	Intact	0.1	Negative
128	Bldg B4/B6	Exterior	Trim		Metal	East	Beige	Intact	0	Negative
129	Bldg B4/B6	Exterior	Electric Panel	Frame	Metal	East	Beige	Intact	0	Negative
130	Bldg B4/B6	Exterior	Electric Panel	Frame	Concrete	East	Beige	Intact	0.4	Negative
131	Bldg B4/B6	Exterior	Electric Panel	Frame	Metal	East	Beige	Intact	0.1	Negative
132	Bldg B4/B6	Exterior	Pipe	Vertical	Metal	East	Beige	Intact	0.1	Negative
133	Bldg B4/B6	Exterior	Room	Wall	Concrete	East	Beige	Intact	0.3	Negative
134	Bldg B4/B6	Exterior	Electric Panel	Frame	Wood	East	Beige	Intact	-0.1	Negative
135	Bldg B4/B6	Exterior	Gutter		Metal	South	Beige	Intact	0.1	Negative

Reading No.	Location	Location Detail	Component	Component Comment	Substrate	Side	Color	Condition	Pb Conc. (mg/cm ²)	Result
136	Bldg B4/B6	Exterior	Trim		Metal	South	Beige	Intact	0	Negative
137	Bldg B4/B6	Exterior	Downspout		Metal	South	Beige	Intact	0.1	Negative
138	Bldg B4/B6	Exterior	Pipe	Vertical	Metal	South	Beige	Intact	0.3	Negative
139	Bldg B4/B6	Exterior	A/C	Cover	Metal	South	Beige	Intact	0.1	Negative
140	Bldg B4/B6	Exterior	Room	Wall	Wood	South	Beige	Intact	0.1	Negative
141	Bldg B4/B6	Exterior	Room	Wall	Stucco	South	Beige	Intact	0.1	Negative
142	Bldg B4/B6	Room B4	Beam		Metal	West	Brown	Intact	0	Negative
143	Bldg B4/B6	Room B4	Window	Casing	Wood	North	Brown	Intact	-0.1	Negative
144	Bldg B4/B6	Room B4	Shelf		Wood	North	Yellow	Intact	0.3	Negative
145	Bldg B4/B6	Room B4	Window	Casing	Wood	South	Brown	Intact	0	Negative
146	Bldg B4/B6	Room B5	Cabinets		Wood	West	Blue	Intact	1.6	Positive
147	Bldg B4/B6	Room B5	Cabinets		Wood	West	Blue	Intact	1.7	Positive
148	Bldg B4/B6	Room B4	Cabinets		Wood	West	Orange	Intact	1.6	Positive
149	Bldg B4/B6	Room B6	Room	Wall	Wood	North	Black	Intact	-0.1	Negative
150	Bldg B4/B6	Room B6	Room	Wall	Wood	West	Red	Intact	-0.1	Negative
151	Bldg B4/B6	Room B6	Cabinets		Wood	West	Orange	Intact	1.7	Positive
152	Bldg B7	Exterior	Fascia		Metal	North	Blue	Intact	0.2	Negative
153	Bldg B7	Exterior	Trim		Metal	North	Blue	Intact	0.1	Negative
154	Bldg B7	Exterior	Beam		Metal	North	Beige	Intact	0.2	Negative
155	Bldg B7	Exterior	Beam		Metal	North	Beige	Intact	0	Negative
156	Bldg B7	Exterior	Trim		Metal	North	Beige	Intact	0.1	Negative
157	Bldg B7	Exterior	Misc	Portico	Wood	North	Beige	Intact	0	Negative
158	Bldg B7	Exterior	Room	Wall	Wood	North	Beige	Intact	-0.1	Negative
159	Bldg B7	Exterior	Room	Wall	Metal	North	Beige	Intact	0.2	Negative
160	Bldg B7	Exterior	Pipe	Vertical	Metal	North	Beige	Intact	0.1	Negative
161	Bldg B7	Exterior	Trim		Metal	North	Brown	Intact	0.2	Negative
162	Bldg B7	Exterior	Room	Wall	Wood	East	Beige	Intact	0.1	Negative
163	Bldg B7	Exterior	Room	Wall	Wood	East	Brown	Intact	-0.1	Negative
164	Bldg B7	Exterior	Misc	Portico	Metal	East	Blue	Intact	0.1	Negative
165	Bldg B7	Exterior	Door		Metal	East	Blue	Intact	0	Negative
166	Bldg B7	Exterior	Door	Frame	Metal	East	Blue	Intact	0.1	Negative
167	Bldg B7	Exterior	Door	Casing	Wood	East	Blue	Intact	0	Negative

Reading No.	Location	Location Detail	Component	Component Comment	Substrate	Side	Color	Condition	Pb Conc. (mg/cm ²)	Result
168	Bldg B7	Exterior	Trim		Metal	East	Brown	Intact	0.1	Negative
169	Bldg B7	Exterior	Railing		Metal	East	Blue	Intact	0.1	Negative
170	Bldg B7	Exterior	Gutter		Metal	South	Beige	Intact	0.1	Negative
170	Bldg B7	Exterior	Beam		Metal	South	Beige	Intact	0.1	Negative
172	Bldg B7	Exterior	Room	Wall	Wood	South	Beige	Intact	0.1	Negative
173	Bldg B7	Exterior	Room	Wall	Metal	South	Beige	Intact	0.1	Negative
174	Bldg B7	Exterior	Pipe	Vertical	Metal	South	Beige	Intact	-0.1	Negative
175	Bldg B7	Exterior	Downspout		Metal	South	Beige	Intact	0.1	Negative
176	Bldg B7	Office	Window	Casing	Wood	North	White	Intact	-0.1	Negative
177	Bldg B7	Office	Door	Frame	Metal	East	Blue	Intact	0.1	Negative
178	Bldg B7	Office	Cabinets		Wood	South	Blue	Intact	0.1	Negative
179	Bldg B7	Office	Beam		Metal		Black	Intact	-0.1	Negative
180	SW Parking	Exterior	Misc	Parking Lines	Concrete		White	Intact	0.3	Negative
181	SW Parking	Exterior	Misc	Parking Lines	Concrete		Blue	Intact	0.3	Negative
182	SW Parking	Exterior	Misc	Parking Lines	Concrete		Yellow	Intact	2.2	Positive
183	SW Parking	Exterior	Misc	Curb	Concrete		Red	Intact	0.2	Negative
184	SW Parking	Exterior	Misc	Curb	Concrete		Blue	Intact	0.2	Negative
185	SW Parking	Exterior	Misc	Parking Stops	Concrete		Blue	Intact	0.2	Negative
186	SW Parking	Exterior	Misc	Light Post	Metal		White	Intact	0.2	Negative
187			(Calibration Check	K				1	Positive
188				Calibration Chec	k				1	Positive
189			(Calibration Check	(1	Positive
190			(Calibration Check	(1.2	Positive
191			(Calibration Check	(1.1	Positive
192			(Calibration Check	K				1.2	Positive
193	Tennis Courts	Exterior	Misc	Goal Post	Metal	North	White	Intact	0.2	Negative
194	Tennis Courts	Exterior	Misc	Goal Post	Metal	East	White	Intact	0.2	Negative
195	Tennis Courts	Exterior	Misc	Court	Concrete		White	Intact	0.3	Negative
196	Tennis Courts	Exterior	Misc	Court	Concrete		Blue	Intact	0.3	Negative
197	Tennis Courts	Exterior	Misc	Court	Concrete		Green	Intact	0.3	Negative
198	Tennis Courts	Exterior	Misc	Court	Concrete		Red	Intact	0.3	Negative

Converse Project No. 22-16-164-01

Dates of Inspection: 12/23, 27 2022 Inspector: R. Stansfield CDPH #4397

Reading No.	Location	Location Detail	Component	Component Comment	Substrate	Side	Color	Condition	Pb Conc. (mg/cm ²)	Result
199	Tennis Courts	Exterior	Misc	Court	Concrete		Blue	Intact	0.3	Negative
200	Tennis Courts	Exterior	Misc	Curb	Concrete	South	Red	Intact	0.2	Negative
201			0.8	Negative						
202			(Calibration Check	K				1.1	Positive
203			(Calibration Check	K				1.1	Positive

X Blue Metal Blag BB(72), North Side rain Int X Black Metal gutter X Black 72-Abue Fiberg1955 Sustanded caling t Sustanded caling t Sustant Sustant Sustant Sustant Sustant Sustant Sustant	(IIIJUIII) - 0, (0, 0	Tes NO
X Black 72-Abue Fiberglass X Blue 73=Bldg BL/B3. North Verper Fascia Dark wall of		ン
X Blue 73=Bldg B Blark 73, above		×
8/2/L 73, 560/C		×
	-0,	×
Zidg B4	0	$\boldsymbol{\lambda}$
ų,	0,0	X
ieloud 74.	[,@	×
124. Short Cabinets, Room BS	(2.)	X
× Orange 74. cabinets in roomBH	<u>م</u> ب	X
Bleeck 24. North wall in Room BG) •0-	Х
X Drange 1 74. Cabinets in Room BG	[*]	X
X Blue Metal 25= Eldy 87. North upper Facia	×.0	λ

Sample Interior Exterior Paint Color Substrate Sample Location Lead Conc. Lead Conc. No. X W Write Countents Condition Lead Conc. Yes No. $I \otimes \mathcal{L} >$ X W Write Countents $Z \in SW$ Fully. $Z \in SW$ Fully. $Z \in SW$ $Z \cap W = Z$ $Z \cap W =$	Interior Exterior Paint Color Substrate Sample Location Lead Conc. Lead Conc. X L/Write Courtienes 76 = 5W Parting. Hincs TAT 0.3 X Yellow Y Tat. Note: 76. Yellow Parting. Lines TAT 0.3 Y Yellow Yellow Yellow Yellow Parting. 21/R X	Interior Exterior	Paint Color UNite				Fax: 6	26.930.1	Tel.: 626.930.1200 Fax: 626.930.1212
X White Concrete 26 SW Parking. HINES IN 0.3 X Yellow J To: Yellow Parking Lat lines J 2,7 X 12,7 X 2, 2,7 X 2,7 X 2, 2,1 X 2, 2, 2, 2, 1 X	X White Courses 26 = SW Parting. Himes Int 0.3 × Yellow J To: Yellow Parting Lat lines J 217 X 16 10 10 10 10 10 10 10 10 10 10 10 10 10	× x	Uhite	Substrate	Sample Location & Comments	Condition	Lead Conc. (mg/cm ²)	LB	A S
× Yellaw Tot Yellaw Zor Yellaw Jr Jr 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	× Yellaw 1 Té. Vellaw Parting Lot lines 1 2.7	x		Concilete		tert.	0 M		X
			ellau	>		~	c,c	\times	
	Additional Comments:								
	Additional Comments:								
	Additional Comments:								
	Additional Comments:								

Project Name: AUburn Project No.: 22-16- Date: Sampled By:	Auba	~ Ndale M	Project Address:	ress:	ം 15	Converse Consultants 717 S. Myrtle Avenue Monrovia, CA 91016 Tel.: 626.930.1200 Fax: 626.930.1212	Se Consultants 717 S. Myrtle Avenue Monrovia, CA 91016 Tel.: 626.930.1200 Fax: 626.930.1212
Sample Interior No.	Exterior	Paint Color	Substrate	Sample Location & Comments	Condition	Lead Conc. (mg/cm ²)	LBP Yes No
N <u>N</u>	×	C Mite	Metal	600 pasts man	The second secon	200	
Additional Comments:							

GEOTECHNICAL INVESTIGATION PROPOSED TRANSPORTATION OFFICE EXPANSION PROJECT ORANGE GROVE HIGH SCHOOL 300 SOUTH BUENA VISTA AVENUE CORONA, CALIFORNIA 92882

Prepared For CORONA-NORCO UNIFIED SCHOOL DISTRICT 2820 CLARK AVENUE NORCO, CALIFORNIA 92860

Prepared By LEIGHTON CONSULTING, INC. 10532 ACACIA STREET, SUITE B-6 RANCHO CUCAMONGA, CALIFORNIA 91730

Project No. 13847.001

April 25, 2023

Leighton Consulting, Inc.

A Leighton Group Company

April 25, 2023

Project No. 13847.001

Corona-Norco Unified School District 2820 Clark Avenue Norco, California 92860

- Attention: Ms. Jacquelyn Roberts Construction Director – Facilities
- Subject: Geotechnical Investigation Proposed Transportation Office Expansion Orange Grove High School 300 South Buena Vista Avenue Corona, California 92882

In accordance with your request and authorization, Leighton Consulting, Inc. (Leighton) has conducted a geotechnical investigation for the proposed Corona-Norco Unified School District (CNUSD) Transportation Office Expansion project, located at 300 South Buena Vista Avenue in the City of Corona, California. The purpose of this study has been to evaluate geologic and geotechnical conditions (including potential geologic hazards) within the area of the proposed improvements, explore subsurface conditions, and provide geotechnical recommendations for design and constructions for the proposed improvements.

We understand based on the provided Site Plan that the District is proposing to expand the transportation office by installing a new approximately 1,440 square foot relocatable building to the east side of their existing transportation office at Orange Grove High School. Along with the building addition, minor flat work improvements associated with the office expansion area and proposed infiltration facilities are also proposed. This report presents our findings and conclusions regarding this project. Based upon our study, the proposed improvements are feasible from a geotechnical viewpoint, provided our recommendations presented herein are incorporated into the design and construction of the project. The most significant geotechnical issues for this project were found to be the potential for strong seismic shaking and shallow compressible soils underlying the site. These and other geotechnical issues are discussed in this report.

We appreciate the opportunity to work with Corona-Norco Unified School District on this project. If you have any questions, or if we can be of further service, please call us at your convenience at (909) 484-2205.

Respectfully submitted,

LEIGHTON CONSULTING, INC.

Jose Tapia, PE 91630 Project Engineer

Jason D. Hertzberg, GE 2711 Principal Engineer

27

Siof

Steven G. Okubo, CEG 2706 Associate Geologist

JAT/SGO/JDH/rsm

Distribution: (1) Addressee

TABLE OF CONTENTS

Section	Page
1.0 INTROD	UCTION1
1.1 1.2 1.3 1.4	Site Location and Description
2.0 FINDING	S5
2.1 2.2 2.3	Geologic Hazards Review
	2.3.1Compressible and Collapsible Soil62.3.2Expansive Soils72.3.3Sulfate Content72.3.4Resistivity, Chloride and pH7
2.4 2.5	Groundwater
	 2.5.1 Surface Faulting
2.6	Secondary Seismic Hazards11
	 2.6.1 Liquefaction and Lateral Spreading
2.7 2.8 2.9 2.10	Slope Stability and Landslides13Flooding and Dam Breach Inundation Potential14Other Potential Hazards Listed on CGS Note 4814Infiltration Testing14
3.0 CONCL	JSIONS AND RECOMMENDATIONS16
3.1 3.2	General Conclusions
	3.2.1Site Preparation163.2.2Overexcavation and Recompaction173.2.3Fill Placement and Compaction173.2.4Import Fill Soil183.2.5Shrinkage and Subsidence193.2.6Excavations in Proximity to Existing Structures19

3.3	Foundations	20
	3.3.1 Minimum Embedment and Width	20
	3.3.2 Allowable Bearing	21
	3.3.3 Lateral Load Resistance	21
	3.3.4 Increase in Bearing and Friction – Short Duration Loads	21
	3.3.5 Settlement Estimates	
3.4	Recommendations for Slabs-On-Grade	22
	3.4.1 Slab Underlayment for Moisture Vapor Retarding	23
3.5	Seismic Design Parameters	24
3.6	Lateral Earth Pressures	
3.7	Cement Type and Corrosion Protection	26
3.8	Pavement Design	
3.9	Temporary Excavations	
3.10	Trench Backfill	
3.11	Surface Drainage	
3.12	Infiltration Recommendations	
3.13	Limitations and Additional Geotechnical Services	

Attachments and Figures (rear of text)

References

- Figure 1 Site Location Map
- Figure 2 Geotechnical Map
- Figure 3 Regional Geology Map
- Figure 4 Geotechnical Cross Section A-A' and B-B'
- Figure 5 Regional Fault and Historical Seismicity Map
- Figure 6 Liquefaction Hazards Map
- Figure 7 Flood Hazard Map
- Figure 8 Dam Breach Inundation Map
- Figure 9 Retaining Wall Backfill and Subdrain Detail

Appendices

- Appendix A Geotechnical Exploration Logs
- Appendix B Geotechnical Laboratory Test Results
- Appendix C Summary of Seismic Analysis
- Appendix D Earthwork and Grading Guide Specifications
- Appendix E CGS Note 48 Checklist with References to this Report

1.0 INTRODUCTION

1.1 Site Location and Description

The Corona-Norco Unified School District Transportation Office is located within the northern portion of the Orange Grove High School campus at 300 South Buena Vista Ave, in the City of Corona, California. The transportation office is attached to the eastern end of the Corona-Norco Adult Education School building. Orange Grove High School is bounded to the east by Buena Vista Avenue with Corona City Hall just beyond, to the north by a vacant lot, to the west by the CNUSD printshop and bus storage yard, and to the south by a parking lot and multifamily residential developments. The approximate project site location and surrounding areas are shown on Figure 1, *Site Location Map*.

The proposed transportation office expansion location options are located on the northeastern portion of the existing Orange Grove High School campus, bordered to the north by the CNUSD facilities parking lot, to the west by five existing relocatable buildings and the 7,000 SF building that houses the current transportation office for proposed additions, to the south by the Adult School main office building, and to the east by the landscaped front campus entrance area with Buena Vista Avenue just beyond. Based on the provided *Topographic Survey Map* prepared by Salazar Surveying, Inc., the site is relatively flat and generally drains gently to the northeast. The ground elevation at the proposed Transportation Office Expansion project improvement area ranges in elevation from approximately 648 to 643 feet above mean sea level (msl).

1.2 <u>Proposed Improvements</u>

Based on the provided Accessibility Site Plan prepared by PBK Architects, plotted on April 7, 2023, we understand that the proposed project includes expanding the existing transportation office by constructing a proposed 36 foot by 40 foot relocatable office building. The location of the proposed relocatable building will be on the east side of the current transportation office location. The project will also contain ancillary flatwork, landscaping, and proposed infiltration facilities improvements.

Grading plans and architectural renderings were not available at the time of this study. However, based on the relatively flat and level existing topography onsite, we

anticipate the majority of grading to consist of minor cuts and fills (less than 5 feet) to achieve design grades for the proposed improvements. This is a public school project under the jurisdiction of the Division of the State Architect (DSA), to be designed and constructed in accordance with the 2022 California Building Code (CBC).

1.3 <u>Purpose of Investigation</u>

The purpose of this study has been to evaluate the geologic and geotechnical conditions and provide geotechnical recommendations for design and construction of the proposed improvements.

1.4 <u>Scope</u>

The scope of our geotechnical investigation has included the following tasks:

- <u>Geologic Hazards Review</u> We reviewed pertinent, readily available geologic and geotechnical literature covering the site. Our review included regional geologic maps and reports available from our library and online sources. Documents reviewed are listed in the attached *References*.
- <u>Pre-field Investigation Activities</u> We coordinated with District representatives and Underground Service Alert to have existing underground utilities located and marked prior to our subsurface investigation. We performed a site visit with a District representative to specifically mark and review the boring locations. We also retained the services of a private utility locator to mark existing shallow buried utilities in the boring location areas.
- <u>Field Exploration</u> Our field investigation included drilling, logging, and sampling of four hollow-stem auger borings (LB-1, LB-2, IT-1 and IT-2) at representative locations in the area of the proposed improvements. Collectively, these borings were drilled to a maximum depth of approximately 50.5 feet below the existing ground surface (bgs).

Encountered earth materials were logged in the field by our field representative and described in accordance with the Unified Soil Classification System (ASTM D2488). Relatively undisturbed soil samples were obtained at selected intervals within these borings using both a ring-lined Modified California split-

barrel sampler and an unlined, 2-inch outside diameter Standard Penetration Test (SPT) split-spoon sampler was also used in collecting samples, which had room for a liner, but no liner was used, as is customary in this area. Sampling resistance blow counts were obtained by dropping a 140-pound, automatic-trip hammer through a 30-inch free fall onto a sampling rod anvil. Modified California and SPT samplers were driven 18 inches and the number of blows was recorded for each 6 inches of penetration. Both sampling methods generally followed respective ASTM D3550 and ASTM D1586 procedures. Representative bulk soil samples were also collected at shallow depths.

Infiltration tests were conducted within borings IT-1 and IT-2, which were both located in the northeastern side of the project based on the existing drainage pattern at the site. Testing was conducted at IT-1 and IT-2 at depths of approximately 10 and 15 feet bgs, respectively, to estimate infiltration characteristics of the soil tested at those locations and depths. These infiltration tests were conducted in general accordance with Riverside County Guidelines.

Boring logs and infiltration measurements collected in the field are presented in Appendix A, *Geotechnical Exploration Logs*. The approximate boring locations are shown on the accompanying Figure 2, *Geotechnical Map*.

- <u>Laboratory Tests</u> Laboratory tests were conducted on selected relatively undisturbed and bulk soil samples obtained during our field investigation. The laboratory testing program was designed to evaluate engineering characteristics of the onsite soil. Laboratory tests conducted include:
 - In situ moisture content and dry density
 - Atterberg Limits
 - Sieve analysis for grain-size distribution
 - Expansion Index
 - Swell/Settlement Potential
 - Maximum dry density and optimum moisture content
 - Corrosion Series (pH, electrical resistivity, chloride ion, sulfate ion)

Results of in situ dry density and moisture content tests are presented on the boring logs in Appendix A. Results of the remaining laboratory tests conducted for this study are provided in Appendix B.

- <u>Engineering Analysis</u> Data obtained from our background review and field exploration was evaluated and analyzed to provide the geotechnical conclusions and preliminary recommendations presented in the following sections.
- <u>Report Preparation</u> Results of our geotechnical investigation have been summarized in this report, presenting our findings, conclusions and preliminary recommendations for design and construction of the project.

2.0 FINDINGS

2.1 <u>Geologic Hazards Review</u>

We have reviewed pertinent, readily available geologic and geotechnical literature covering the site. Our review included regional geologic maps and reports available from our library. Documents reviewed are listed in *References*. Potential geologic hazards are discussed in the following sections. Our review has considered California Geological Survey's Note 48, *Checklist of the Review of Engineering Geology and Seismology Reports for California Public Schools, Hospitals, and Essential Services Buildings*. A copy of the Note 48 checklist is included in Appendix E of this report and has been annotated indicating the applicable sections of this report that address each checklist item.

2.2 <u>Regional Geologic Setting</u>

The site is located in the northern Peninsular Ranges geomorphic province of southern California, on the Perris Block near the junction where the Chino section diverges from the Whittier section of the Elsinore fault zone. The Perris Block is a relatively unfaulted mass of Mesozoic plutonic rocks of the southern California Batholith and metasedimentary bedrock. The Perris Block is bounded by the Elsinore fault zone to the west, San Jacinto fault zone to the east, the Sierra Madre fault zone to the north, and the San Felipe fault zone to the south. The site is located approximately 2.0 miles northeast of the Chino section and approximately 6.7 miles east of the Whittier section of the Elsinore fault zone. The site is also located approximately 20.1 miles southwest of the closest section of the San Jacinto fault zone. *Figure 5, Regional Fault and Historical Seismicity Map* shows regional active and potentially active fault traces with respect to the site location.

The site has been regionally mapped as being underlain by Holocene and Late Pleistocene-aged young alluvial fan deposits consisting of unconsolidated silt, sand, cobbles, and boulders. The regional geology of the area is depicted on Figure 3, *Regional Geology Map*.

2.3 Subsurface Soil Conditions

During our field exploration, we encountered a mantle of artificial fill (afu) underlain by native Quaternary Young Alluvial Fan Deposits (Qyf). Artificial fill was

encountered within our borings underlying existing pavement sections at the site, and typically extended to 4 to 5 feet below the existing ground surface. We have presumed that the onsite artificial fill was associated with past grading and development. Because documentation regarding the engineering and placement of artificial fill encountered was not available to us for our investigation, we have characterized it as undocumented.

Young Alluvial Fan Deposits encountered underlying undocumented artificial fill within the exploratory borings drilled onsite generally consisted of soft to very stiff sandy clays with varying amounts of gravels generally in the upper 20 feet underlain by medium dense to dense clayey sands and clayey gravel, each with varying amounts of gravel. These soils were visually described as moist to the maximum depths explored. During drilling, we also encountered cobbles over 4 inches in dimension; as such we believe the high sampling blow counts generally encountered below 20 feet were influenced by the presence of gravel and cobbles and not necessarily representative of the interstitial soil matrix.

Laboratory testing indicated that near-surface soils are expected to be generally low to medium plasticity. The laboratory-measured in situ dry density of soil samples ranged from approximately 100 to 118 pcf and moisture contents ranged from approximately 15 and 22 percent in the upper 10 feet. The laboratory maximum dry density of a near-surface soil sample obtained from boring LB-1 was 116.7 pcf with a 13.3 percent optimum moisture content as determined by ASTM D1557.

More detailed descriptions of the subsurface conditions are presented on the boring logs in Appendix A. Cross-sectional illustrations of encountered subsurface soil conditions are included as Figures 4A and 4B.

2.3.1 Compressible and Collapsible Soil

Soil compressibility refers to a soil's potential for settlement when subjected to increased loads, as from a new structure or fill surcharge. Based on our investigation and laboratory testing, the near-surface alluvial soils in the proposed structure locations are considered slightly compressible, becoming less compressible with depth. Partial removal and recompaction of this material will further reduce the potential for adverse total and differential settlement of the proposed improvements.

Collapse potential (moisture sensitivity, sometimes referred to as 'hydrocollapse') refers to the potential settlement of a soil under existing stresses upon being wetted. Based on the clayey nature of the near-surface soil and our removal and recompaction recommendations, soils are expected to have a low collapse potential.

2.3.2 Expansive Soils

Expansive soils contain significant amounts of clay particles that swell considerably when wetted and shrink when dried. Structures constructed on these soils are subjected to large uplifting forces caused by the swelling. Without proper measures taken, heaving and cracking of building foundations and slabs-on-grade could result.

Based on laboratory test results of the recovered near surface soils during our current investigation, onsite soils are expected to have a low to medium expansion potential. Based on laboratory testing of near surface soils, soils are expected to generally be of low to medium plasticity.

2.3.3 Sulfate Content

Water-soluble sulfates in soil can react adversely with concrete. However, concrete in contact with soil containing sulfate concentrations of less than 0.1 percent by weight is considered to have negligible sulfate exposure based on the American Concrete Institute (ACI) publication 318-14, Section 19.3 (ACI, 2014), adopted by the 2022 CBC (Section 1904A.2).

A representative near-surface soil sample was tested for soluble sulfate content. The result of this test indicated a sulfate content of less than 0.1 percent by weight. As such, the soils exposed at grade are expected to pose negligible potential (Exposure Class S0) for sulfate reaction with concrete.

2.3.4 <u>Resistivity, Chloride and pH</u>

Soil corrosivity to ferrous metals can be estimated by the soil's electrical resistivity, chloride content and pH. In general, soil having a minimum resistivity between 1,000 and 2,000 ohm-cm is considered corrosive, and soil

having a minimum resistivity less than 1,000 ohm-cm is considered severely corrosive. Soil with a chloride content of 500 parts-per-million (ppm) or more is considered corrosive to ferrous metals.

As a screening for potentially corrosive soil, a near surface soil sample was tested during this investigation to determine their minimum resistivity, chloride content, and pH. These tests indicated a minimum resistivity of 1,750 ohm-cm, a chloride content of 240 ppm, and pH of 6.69. Based on the minimum resistivity, the onsite soil is considered to be corrosive to ferrous metals.

2.4 <u>Groundwater</u>

Groundwater was not encountered in our borings drilled onsite to a maximum explored depth of 51½ feet bgs. Historical data from groundwater elevation contour maps dating back to 1933 (CDWR, 1970) indicate groundwater levels in the area of the site on the order of approximately 523 feet above mean sea level, which correlates to a depth of about 121 feet bgs from the lowest elevation at the site. Recent groundwater data from the Western Municipal Water District (CDWR, 2023a) indicated the shallowest groundwater historically measured from State Well No. 03S07W26J003S, located approximately 790 feet southwest from the site, was approximately 115 feet below ground surface (bgs) in 2011. Based on these, groundwater levels at this project site are expected to be deeper than 50 feet bgs.

2.5 Faulting and Seismicity

In general, the primary seismic hazards for sites in the region include surface rupture along active faults and strong ground shaking. The potential for fault rupture and seismic shaking are discussed below.

2.5.1 Surface Faulting

One of the primary seismic hazards for this region is surface fault rupture. Our assessment of the possible presence of active faulting through the proposed improvement project site included a review of available literature, maps, and aerial photographs.

The California Geological Survey (CGS) and Riverside County have both mapped the site to be outside of an Earthquake Fault Zone. Additionally, published geologic mapping has not indicated any faults transecting or trending towards the site. No mapped faults or AP zones transect or project through the project site.

The closest mapped active or potentially active fault traces are the Chino section (located approx. 2.0 miles from the site), the Glen Ivy (located approx. 3.2 miles from site) and Whittier sections (located approx. 6.7 miles from the site) of the Elsinore fault zone. Figure 5, *Regional Fault Map and Historic Seismicity Map*, shows the locations of known traces of significant faults relative to the location of the project.

2.5.2 Seismic Design Parameters

Based on current understanding of local faulting, the principal seismic hazard that could affect the site is ground shaking resulting from an earthquake occurring along several major active or potentially active faults in southern California. The project should be designed in accordance with applicable current building codes and standards utilizing appropriate seismic design parameters intended to reduce seismic risk as defined by California Geological Survey (CGS) Chapter 2 of Special Publication 117A (CGS, 2008). The following are seismic design parameters for new structures based on the 2022 California Building Code (CBC). The mapbased seismic parameters presented were obtained from United States Geological Survey in accordance with American Society of Civil Engineers (ASCE) Publication ASCE 7-16 and the 2022 CBC, Chapter 16A.

We assume that the proposed buildings will have a period of 0.5 second or less. As such, Site Class F is not required, and Site Class may be determined in accordance with ASCE 7-16 Section 20.3. If the building period is greater than 0.5 second, site class should be reevaluated.

Based on our evaluation of subsurface data, we have selected Site Class D. A summary of Site Class evaluation is included in Appendix C.

2022CBC Parameters (CBC or ASCE 7-16 reference)	Value 2022 CBC
Site Latitude and Longitude (degrees): 33.8793, -117.5777	
Site Class Definition (1613A.2.2, ASCE 7-16 Ch 20)	D**
Mapped Spectral Response Acceleration at 0.2s Period (1613A.2.1), S_s	2.071 g
Mapped Spectral Response Acceleration at 1s Period (1613A.2.1), S_1	0.778 g
Short Period Site Coefficient at 0.2s Period (T1613A.2.3(1)), F_a	1.000
Long Period Site Coefficient at 1s Period (T1613A.2.3(2)), F_v	1.700*
Adjusted Spectral Response Acceleration at 0.2s Period (1613A.2.3), S_{MS}	2.071 g
Adjusted Spectral Response Acceleration at 1s Period (1613A.2.3), S_{M1}	1.323* g
Design Spectral Response Acceleration at 0.2s Period (1613A.2.4), S_{DS}	1.381 g
Design Spectral Response Acceleration at 1s Period (1613A.2.4), S_{D1}	0.882* g
Mapped MCE_G peak ground acceleration (11.8.3.2, Fig 22-9 to 13), PGA	0.869 g
Site Coefficient for Mapped $MCE_G PGA$ (11.8.3.2), F_{PGA}	1.100
Peak Ground Acceleration, mod w/ site effects (1803A.5.12; 11.8.3.2), PGA _M	0.956 g

Table 1 – 2022 CBC Seismic Design Parameters

* See Section 11.4.8 of ASCE 7-16. A site-specific ground motion hazard analysis in accordance with Section 21.2 of ASCE 7-16 is required for this site. Per Supplement 3 to ASCE 7-16, a site-specific ground motion hazard analysis is not required where the value of the parameters SM₁ and SD₁ in the table are increased by 50%.

** Site Class D, and all of the resulting parameters in this table, may only be used for structures without seismic isolation or seismic damping systems.

Based on ASCE 7-16 Equation 11.8-1, the F_{PGA} is 1.1, the PGA is 0.869g, and the PGA_M is 0.956g. As an added check, PGA and hazard deaggregation were also estimated using the United States Geological Survey's (USGS) 2008 Interactive Deaggregations utility. The results of this analysis indicate that the predominant modal earthquake has a PGA of 0.93g with a magnitude of approximately 6.5 (Mw) at a distance on the order of 5.9 kilometers for the Maximum Considered Earthquake (2% probability of exceedance in 50 years); 2/3 of this value is 0.62g. Deaggregation results are included in Appendix C.

Until reviewed and accepted by the California Geologic Survey (CGS), these parameters may be subject to change. Changes may be required as part of the CGS review process.

2.5.3 <u>Historical Seismicity</u>

The Regional Fault and Historical Seismicity Map (Figure 5) shows recorded historical regional seismic events (those that have been recorded since the mid-1700s) with respect to the site. Based on this map, it appears that the site has been exposed to relatively significant seismic events; however, this site does not appear to have experienced more severe seismicity than compared to much of southern California in general. We are unaware of documentation that indicates that past earthquake damage in the site vicinity has been significantly worse than for the majority of southern California. In addition, we are unaware of damage in the site vicinity as the result of liquefaction, lateral spreading, or other related phenomena.

2.6 <u>Secondary Seismic Hazards</u>

In general, secondary seismic hazards for sites in the region could include soil liquefaction, earthquake-induced settlement, lateral displacement, surface manifestations of liquefaction, landsliding, seiches, and tsunamis. The potential for secondary seismic hazards at the site is discussed below.

2.6.1 Liquefaction and Lateral Spreading

Liquefaction is the loss of soil strength or stiffness due to a buildup of porewater pressure during severe ground shaking. Liquefaction is associated primarily with loose (low density), saturated, fine- to medium-grained, cohesionless soils. Effects of liquefaction can include sand boils, settlement, and bearing capacity failures below structural foundations.

The site has not been evaluated by the State of California for liquefaction hazards. Riverside County (2023) has mapped the site to be in an area with a low liquefaction susceptibility (see Figure 6, *Liquefaction Hazards Map*).

Historical groundwater levels have been estimated to have been no shallower than about 115 feet bgs based on available groundwater data from nearby water monitoring wells. Although we do not anticipate groundwater levels at the site to be this shallow, we have analyzed the potential for liquefaction using a historic high groundwater level of 115 feet bgs.

Our analysis was based on the modified Seed Simplified Procedure as detailed by Youd et al. (2001) and Martin and Lew (1999), which compares the seismic demand on a soil layer (Cyclic Stress Ratio, or CSR) to the capacity of the soil to resist liquefaction (Cyclic Resistance Ratio, or CRR), (Youd et al., 2001). A minimum required factor of safety of 1.3 was used in our analysis, with factor of safety defined as CRR/CSR. As required, our analysis assumes that the design earthquake would occur while the groundwater is at its estimated historically highest level. In the SPT method, soil resistance to liquefaction is estimated based on several factors, including SPT sampling blow counts normalized and corrected for several factors including fines content, and overburden pressure. Soil plasticity and moisture content are also considered in an evaluation of liquefaction. Parameters utilized in our analysis include Standard Penetration Test (SPT) results from the borings, visual descriptions of soil samples retrieved, and geotechnical laboratory test results.

Based on our analysis, potentially liquefiable layers were not encountered at the project site. Due to the relatively dense nature of the underlying soils and deep historic groundwater elevations, the potential for liquefaction onsite (including effects of liquefaction, such as lateral spreading) is considered very low. A summary of our liquefaction analyses is included in Appendix C.

2.6.2 Seismically Induced Settlement

Seismically induced settlement consists of dry dynamic settlement (above groundwater) and liquefaction-induced settlement (below groundwater). During a strong seismic event, seismically induced settlement can occur within loose to moderately dense sandy soil due to reduction in volume during and shortly after an earthquake event. Settlement caused by ground shaking is often nonuniformly distributed, which can result in differential settlement.

We have performed analyses to estimate the potential for seismically induced settlement using the method of Tokimatsu and Seed, and based on Martin and Lew (1999), considering the maximum considered earthquake (MCE) peak ground acceleration (PGA_M). Design/historic high groundwater levels of 115 feet below ground surface were used in the analysis. Based on our analysis, a potential for approximately 2.1 inches of seismic settlement is

estimated at the site; however, based on our overexcavation recommendations presented later in this report, the maximum estimated potential seismic settlement is reduced to approximately 1.2 inches. Results of our seismic settlement analysis is presented in Appendix D.

If the potential differential settlement is estimated as half of the total seismic settlement over a horizontal distance of 30 feet, this would result in a maximum 0.6 inches differential settlement in 30 feet, or angular distortion of 0.0017L, considering the recommended overexcavation. The structural engineer should determine Structure Type and Risk Category and evaluate whether the differential settlement estimates described above are tolerable. A copy of ASCE 7-16 Table 12.13-3 is provided as follows for reference.

	Risk Category		
Structure Type	l or ll		IV
Single-story structures with concrete or masonry wall systems	0.0075L	0.005L	0.002L
Other single-story structures	0.015L	0.010L	0.002L
Multistory structures with concrete or masonry wall systems	0.005L	0.003L	0.002L
Other multistory structures	0.010L	0.006L	0.002L

Table 12.13-3 Differential Settlement Threshold

2.6.3 Seiches and Tsunamis

Seiches are large waves generated in enclosed bodies of water in response to ground shaking. Tsunamis are waves generated in large bodies of water by fault displacement or major ground movement. Based on the location of the site and its distance from contained water facilities, seiches and tsunamis are not a hazard to the site.

2.7 Slope Stability and Landslides

No significant slopes are present or planned near the planned improvements. As such, slope stability evaluation (including development of static and dynamic strength parameters, pseudostatic slope stability coefficients, dynamic site

conditions evaluation, and slope stability mitigation) is not warranted for this project.

2.8 Flooding and Dam Breach Inundation Potential

The Transportation Expansion Areas are mapped within a "Zone X, 0.2% Annual Chance Flood Hazard, Areas of 1% annual chance flood with average depths less than one foot or with drainage areas of less than one square mile" designation within FEMA's Flood Map Service Center (FEMA, 2023). The 0.2% Annual Chance Flood Hazards is also referred to as a 500-year flood hazard zone as shown on Figure 7, *Flood Hazard Zone Map*. A regional drainage channel is located west of Lincoln Avenue, approximately 1,800 feet west of the site. This should be reviewed during civil design.

Flooding can also result from the failure of dams. Based on our review of dam breach inundation data by the California Office of Emergency Services (OES), and the California Department of Water Resource's Dam Breach Inundation Map Web Publisher (CDWR, 2023b) the site is not located near dams or in an area shown as susceptible to dam breach inundation (see Figure 8, *Dam Breach inundation Map*).

2.9 Other Potential Hazards Listed on CGS Note 48

The following naturally occurring hazards are not believed to exist at the site nor in the region: methane gas, hydrogen-sulfide gas, tar seeps, volcanic eruption, radon-22 gas, and naturally occurring asbestos in geologic formations associated with serpentine.

The Transportation Expansion locations are not located within an area of land subsidence due to groundwater pumping, peat loss, or oil extraction as identified by the U.S. Geological Survey (USGS, 2023b). We are unaware of significant subsidence or damage from subsidence near the site due to groundwater withdrawal.

2.10 Infiltration Testing

Infiltration testing was conducted within two of our borings onsite (IT-1 and IT-2) to estimate the infiltration characteristics of the onsite soils at the depths and

locations tested. The infiltration testing was conducted at a bottom test zone depth of approximately 10 and 15 feet bgs, respectively.

Well permeameter tests are useful for field measurements of soil infiltration rates, and are suited for testing when the design depth of the basin or chamber is deeper than current existing grades. It should be noted that this is a clean-water, smallscale test, and that correction factors need to be applied. A test consists of excavating a boring to the depth of the test (or deeper as long as it is partially backfilled with soil and a bentonite plug with a thin soil covering is placed just below the design test elevation). A layer of clean sand or gravel is then placed in the boring bottom to temporarily support a perforated well casing pipe system. Once the well casing pipe has been installed, coarse sand or gravel is poured in the annular space outside of the well casing within the test zone to prevent the boring from caving/collapsing or spalling when water is added. Water is added into the boring to an initial water height, as water within the boring infiltrates into the soil, measurements are taken of the height of the water column within the boring at equally timed intervals (known as a falling head test). The infiltration rate as measured during intervals of the test is defined as the flow rate of water infiltrated, divided by the surface area of the infiltration interface. The test was conducted based on the USBR 7300-89 test method.

Results of the infiltration testing are summarized below and are provided in Appendix A.

Boring	Soil Type	Approx. Test Zone (ft), bgs	Percent Fines (%)	Unfactored Infiltration Rate (in/hr)
IT-1	Clay	5 to 10	74	0.06
IT-2	Sandy Clay with Gravel and Clayey Sand with Gravel	10 to 15	13 to 75	0.07

Infiltration Test Rates

3.0 CONCLUSIONS AND RECOMMENDATIONS

3.1 <u>General Conclusions</u>

Based on this investigation, construction of the proposed improvements, with the exception of stormwater infiltration systems (see Section 3.12 below), is feasible from a geotechnical standpoint. No severe geological or geotechnical issues were identified that would preclude construction of the proposed building addition improvements. The most significant geotechnical issues at the site are the potential for strong seismic shaking and potentially compressible near surface soils. Recommendations for design and construction of proposed improvements are provided in the following sections.

The proposed building addition structure will be located within a developed site, and therefore, existing utilities may be encountered during grading. We assume these utilities will be avoided or rerouted; if so, these will then pose no special consideration, provided the excavations are properly backfilled in accordance with our recommendations below. If any existing utilities within or immediately adjacent to the proposed structures (such as within the limits of overexcavation as recommended below) are to remain, these should be further evaluated on a caseby-case basis.

3.2 Earthwork and Grading

Grading should be performed in accordance with the General Earthwork and Grading Specifications presented in Appendix D, unless specifically revised or amended below or by future recommendations based on final development plans.

3.2.1 <u>Site Preparation</u>

Prior to construction, the areas of the proposed improvements should be cleared of existing pavement, vegetation, trash, and debris. Any underground obstructions onsite that interfere with the proposed foundations should be removed. Trees should be removed and grubbed out. Efforts should be made to locate any existing utility lines. Those lines should be removed or rerouted if they interfere with the proposed construction, and the resulting cavities should be backfilled and compacted as recommended in Sections 3.2.3 and 3.10.

3.2.2 Overexcavation and Recompaction

To reduce the potential for adverse total and differential settlement of the proposed structures, the underlying subgrade soil should be prepared in such a manner that a uniform response to the applied loads is achieved.

For the proposed building expansion, and any retaining walls over 4 feet tall, we recommend that the onsite soils be excavated to a minimum depth of 5 feet below existing ground surface or 3 feet below the bottom of the proposed footing depth, whichever is greater. Where possible, the removal bottoms should extend horizontally beyond the proposed structures a minimum of 5 feet from the outside edges of the footings (including columns connected to the buildings), or a distance equal to the depth of overexcavation below the footings, whichever is farther. During overexcavation, the soil conditions should be observed by Leighton to further evaluate these recommendations based on actual field conditions encountered. A firm removal bottom should be established across the overexcavation footprint to provide uniform foundation support for the proposed structure. Leighton should observe the removal bottom prior to placing fill. Deeper overexcavation and recompaction may be recommended locally until a firm removal bottom is achieved.

Areas outside of the proposed structures planned for new asphalt or concrete pavement (such as parking areas or fire lanes), flatwork (such as sidewalks), site walls and low retaining walls, areas to receive fill, and other improvements, should be overexcavated to a minimum depth of 18 inches below existing grade or 12 inches below proposed subgrade (including the footing subgrade for walls), whichever is deeper.

After completion of the overexcavation, and prior to fill placement, the exposed surfaces should be scarified to a minimum depth of 6 inches, moisture conditioned to or slightly above optimum moisture content, and recompacted to a minimum 90 percent relative compaction, relative to the ASTM D1557 laboratory maximum density.

3.2.3 Fill Placement and Compaction

The onsite soil is suitable for use as compacted structural fill, provided it is free of debris, organic material and oversized material (greater than

8 inches in largest dimension). Any soil to be placed as fill, whether onsite or imported material, should be accepted by Leighton.

All fill soil should be placed in thin, loose lifts, moisture-conditioned, as necessary, with moisture contents of at least optimum, and compacted to a minimum 90 percent relative compaction as determined by ASTM Test Method D1557. Aggregate base for pavements, and the upper 8 inches of pavement subgrade should be compacted to a minimum of 95 percent relative compaction.

3.2.4 Import Fill Soil

If import soil is to be placed as fill, it should be geotechnically accepted by Leighton. Preferably at least 3 working days prior to proposed import to the site, the contractor should provide Leighton pertinent information of the proposed import soil, such as location of the soil, whether stockpiled or native in place, and pertinent geotechnical reports if available. We recommend that a Leighton representative visit the proposed import site to observe the soil conditions and obtain representative soil samples. Potential issues may include soil that is more expansive than onsite soil, soil that is too wet, soil that is too rocky or too dissimilar to onsite soils, oversize material, organics, debris, etc.

The owner should require proper documentation that soils imported to the project site are suitable for use at the school site from an environmental standpoint. The import soils should be evaluated and/or tested, as appropriate, for environmental suitability based on the *Information Advisory – Clean Imported Fill* (Department of Toxic Substances Control, October 2001 or more current edition). The documentation indicating the soils are suitable for use should be provided to the project construction manager prior to intended import to the site. Leighton can provide these services to the District, but the contractor must give Leighton adequate time to properly evaluate the material prior to import–a minimum of 5 working days (laboratory rush charges would apply), but preferably 7 working days or more. The contractor should provide Leighton pertinent information, such as the amount and location of the soil, whether stockpiled or native in place, soil owner contact information, and pertinent environmental reports, if available

3.2.5 Shrinkage and Subsidence

The change in volume of excavated and recompacted soil varies according to soil type and location. This volume change is represented as a percentage increase (bulking) or decrease (shrinkage) in volume of fill after removal and recompaction. Field and laboratory data used in our calculations included laboratory-measured maximum dry densities for soil types encountered at the subject site and the measured in-place densities of soils encountered. We preliminarily estimate the following earth volume changes will occur during grading. These are rough estimates:

Shrinkage (Approximate)	5% ± 3%
Subsidence (Approximate)	0.1 foot

The level of fill compaction, variations in the dry density of the existing soils and other factors influence the amount of volume change.

It should be noted that subsidence, as referred to above, is settlement of inplace earth materials due to heavy equipment processing. It does not refer to potential settlement due to placement of additional loads from new fill (i.e., rising of grades).

These shrinkage values are general guide values. Actual values will vary, due to the varying soil conditions and varying construction techniques. It is not possible to estimate exact values. Therefore, as with any grading project, some earthwork volume adjustments should be anticipated during grading.

3.2.6 Excavations in Proximity to Existing Structures

Excavations planned adjacent to existing structures should be conducted with care. Trench excavations, overexcavations, and utilities should not be allowed approximately parallel to and within close proximity to footings, as described in 2022 CBC 1809A.14 (i.e., within a 2:1 horizontal to vertical projection from 9 inches above the bottom of an existing or proposed foundation), unless such case is reviewed by the Geotechnical Engineer. In areas where an excavation is planned adjacent to other surface improvements, excavations should not come closer than a 1.5:1 projection

extending from the ground surface at the location of the existing improvement, unless such case is reviewed by the Geotechnical Engineer. Temporary excavations above such projections are anticipated to be acceptable.

If a portion of an excavation is planned to extend below the projections described above, this should be reviewed on a case-by-case basis. Depending on the actual conditions (such as depth of planned excavation, horizontal distance from the structure, depth of the as-built foundation conditions, etc.), the excavation may be possible by making a series of adjacent slot cut excavations perpendicular to the buildings in a sequential 'ABC' method, limiting the width of excavation adjacent to existing buildings at any given time and reducing the potential for undermining the existing structure. The maximum width and depth of the slot cuts should be based on the specific conditions of the planned excavations and the soil conditions. The excavations should be no deeper than necessary and should be left open for as short a period as feasible. For slot cuts up to five feet in depth, the maximum allowable width shall be limited to 8 feet. Cuts deeper than 5 feet should be reviewed by Leighton prior to excavations. Backfill of these slot cut excavations should be compacted to a minimum of 95 percent relative compaction as determined by ASTM Test Method D1557.

3.3 Foundations

Conventional shallow foundations may be used to support the loads of the proposed structure expansion. Overexcavation and recompaction of the footing subgrade soil should be performed as detailed in Section 3.2.2.

The following recommendations are based on the onsite soil conditions and soils with a low expansion potential.

3.3.1 Minimum Embedment and Width

Based on our investigation, conventional footings for the proposed one-story structures should have a minimum embedment of 12 inches, with a minimum width of 24 and 15 inches for isolated and continuous footings, respectively.

3.3.2 <u>Allowable Bearing</u>

An allowable bearing pressure of 1,800 pounds-per-square-foot (psf) may be used, based on the minimum embedment depth and width above. This allowable bearing value may be increased by 250 psf per foot increase in depth or width to a maximum allowable bearing pressure of 2,500 psf. These allowable bearing pressures are for total dead load and sustained live loads. Footing reinforcement should be designed by the structural engineer.

3.3.3 Lateral Load Resistance

Soil resistance available to withstand lateral loads on a shallow foundation is a function of the frictional resistance along the base of the footing and the passive resistance that may develop as the face of the structure tends to move into the soil. The frictional resistance between the base of the foundation and the subgrade soil may be computed using an allowable coefficient of friction of 0.30. The passive resistance may be computed using an allowable (factor of safety of 1.5 applied) equivalent fluid pressure of 240 pounds per cubic foot (pcf), assuming there is constant contact between the footing and undisturbed soil. Friction and passive pressure may be combined without reduction, provided it is acceptable that the footings move laterally sufficiently to develop passive pressure (approximately ¼ inch); otherwise, friction alone should be assumed.

3.3.4 Increase in Bearing and Friction – Short Duration Loads

For the case of short term loading (seismic and wind loading), an increase of 1/3 would apply to the bearing pressure and friction values. The ultimate bearing pressure is assumed to be roughly three times the allowable bearing pressure. However, this ultimate pressure only considers structural failure/collapse (life safety) and not structural damage or significant cosmetic damage. Excessive settlement is anticipated to occur well before the ultimate bearing pressure is attained.

3.3.5 <u>Settlement Estimates</u>

The recommended overexcavation, relative compaction and allowable bearing pressure are based on a total allowable, post construction settlement

of 1 inch. Differential settlement due to static loading is estimated at approximately ½ inch over a horizontal distance of 40 feet between or along similarly loaded footings. Since settlement is a function of footing sustained load, size and contact bearing pressure, differential settlement can be expected between adjacent columns or walls where a large differential loading condition exists.

Seismic differential settlement is estimated to be approximately 0.6 inch in 30 feet, or angular distortion of 0.0016L for the design earthquake.

3.4 <u>Recommendations for Slabs-On-Grade</u>

Concrete slabs-on-grade should be designed by the structural engineer in accordance with the current CBC for a soil with a low expansion potential. An effective PI value of 13 should be used for conventional foundation and slab design. Observation and possibly testing to confirm the expansion potential of the near surface soil should be conducted during site grading.

The following minimum slab recommendations should be used. More stringent requirements may be required by agencies, the structural engineer, the architect, or the CBC. Slabs-on-grade should have the following minimum recommended components:

- <u>Subgrade Moisture Conditioning</u>: The subgrade soil should be moisture conditioned to at least 32 percentage points above optimum moisture content to a minimum depth of 12 inches prior to placing steel or concrete.
- <u>Concrete Thickness and Structural Design</u>: Slabs-on-grade should be designed by the structural engineer, but should be at least 5 inches thick (this is referring to the actual minimum thickness, not the nominal thickness). Reinforcing steel should be designed by the structural engineer, but as a minimum (for conventionally reinforced slabs) should be No. 4 rebar placed at 12 inches on center, each direction, mid-depth in the slab. A modulus of subgrade reaction (k) as a linear spring constant, of 175 pounds per square inch per inch deflection (pci) can be used for design of heavily loaded slabs-on-grade, assuming a linear response up to deflections on the order of ³/₄ inch.

Minor cracking of the concrete as it cures, due to drying and shrinkage is normal and should be expected. However, cracking is often aggravated by a high water/cement ratio, high concrete temperature at the time of placement, small

nominal aggregate size, aggregate that is not sufficiently clean, and rapid moisture loss due to hot, dry, and/or windy weather conditions during placement and curing. Cracking due to temperature and moisture fluctuations can also be expected. Low slump concrete can reduce the potential for shrinkage cracking. Additionally, reinforcement in slabs and foundations can generally reduce the potential for shrinkage cracking. The structural engineer should consider these and other pertinent concrete design and construction considerations in slab design and specifications.

3.4.1 Slab Underlayment for Moisture Vapor Retarding

Because moisture vapor from the underlying soils will be transmitted through slabs-on-grade without preventive measures, slab underlayment for moisture vapor retarding should be designed by qualified professionals (such as the structural engineer and/or architect) where control of moisture vapor transmission through slabs is considered important to this project (such as where moisture-sensitive floor coverings or equipment are planned). Slab underlayment typically includes a moisture vapor retarder membrane (such as 15-mil thick or greater), and provisions for protection of the vapor retarder during construction. The structural engineer and/or architect should specify pertinent slab and concrete design parameters, such as whether a sand blotter layer should be placed over the vapor retarder.

Moisture retarders can reduce, but not eliminate moisture vapor rise from the underlying soils up through the slab. Moisture retarders should be designed and constructed in accordance with applicable American Concrete Institute, Portland Cement Association, Post-Tensioning Institute, ASTM International, and California Building Code requirements and guidelines.

Leighton does not practice in the field of moisture vapor transmission evaluation/mitigation, since this does not fall under the geotechnical discipline. Therefore, we recommend that a qualified person, such as the flooring subcontractor, structural engineer, and/or architect, be consulted to evaluate the general and specific moisture vapor transmission paths and any impact on the proposed construction. That person (or persons) should provide recommendations for mitigation of potential adverse impact of moisture vapor transmission on various components of the structures as deemed appropriate. In addition, the recommendations in this report and our

services in general are not intended to address mold prevention, since we, along with geotechnical consultants in general, do not practice in the area of mold prevention. If specific recommendations are desired, a professional mold prevention consultant should be contacted.

3.5 <u>Seismic Design Parameters</u>

In order to reduce the effects of ground shaking produced by regional seismic events, seismic design should be performed in accordance with the current CBC. The seismic design parameters listed in Table 1 of Section 2.5.2 of this report should be considered for the seismic analysis of the subject site.

3.6 <u>Lateral Earth Pressures</u>

The following retaining wall recommendations are included for design consideration of walls with a height less than 12 feet. We recommend that retaining walls be backfilled with very low expansive soil and constructed with a backdrain in accordance with the recommendations provided on Figure 9, *Retaining Wall Backfill and Subdrain Detail.* Using expansive soil as retaining wall backfill will result in higher lateral earth pressures exerted on the wall and are, therefore, not recommended. Retaining wall locations and configurations are unknown at the time of this report.

Static Equivalent Fluid Pressure (pcf)		
Condition	Level Backfill	
Active	60	
At-Rest (drained, compacted-fill backfill)	80	
Passive (ultimate)	sive (ultimate) 240	
	(Max. 2,500 psf)	

Table 2 – Retaining Wall	Design Parameters
--------------------------	-------------------

The above values do not contain an appreciable factor of safety, so the structural engineer should apply the applicable factors of safety and/or load factors during design.

Cantilever walls that are designed to yield at least 0.001H, where H is equal to the wall height, may be designed using the active condition. Rigid walls and walls braced at the top should be designed using the at-rest condition.

Passive pressure is used to compute soil resistance to lateral structural movement. In addition, for sliding resistance, a frictional resistance coefficient of 0.30 may be used at the concrete and soil interface. The lateral passive resistance should be taken into account only if it is ensured that the soil providing passive resistance, embedded against the foundation elements, will remain intact with time. A soil unit weight of 120 pcf may be assumed for calculating the actual weight of the soil over the wall footing.

In addition to the above lateral forces due to retained earth, surcharge due to improvements, such as an adjacent structure or traffic loading, should be considered in the design of the retaining wall. Loads applied within a 1:1 projection from the surcharging structure on the stem of the wall should be considered in the design. A third of uniform vertical surcharge-loads should be applied at the surface as a horizontal pressure on cantilever (active) retaining walls, while half of uniform vertical surcharge-loads should be applied as a horizontal pressure on braced (atrest) retaining walls. To account for automobile parking surcharge, we suggest that a uniform horizontal pressure of 100 psf (for restrained walls) or 70 psf (for cantilever walls) be added for design, where autos are parked within a horizontal distance behind the retaining wall less than the height of the retaining wall stem.

For walls with a retained height over 6 feet, or where otherwise required by Code or deemed appropriate by the structural engineer, we recommend that the wall designs be checked seismically using an additive seismic Equivalent Fluid Pressure (EFP) of 28 pcf, which is added to the active EFP. Such walls that are to be designed in the static case assuming the at-rest condition should be checked seismically using this additive seismic EFP added to the active condition (i.e., the additive seismic EFP is not added to the at-rest EFP value shown in Table 2 above). The additive seismic EFP should be applied with a standard EFP pressure distribution (i.e., it is not an inverted triangle).

Conventional retaining wall footings should have a minimum width of 24 inches and a minimum embedment of 12 inches below the lowest adjacent grade. An allowable bearing pressure of 1,800 psf may be used for retaining wall footing

design, based on the minimum footing width and depth. This bearing value may be increased by 250 psf per foot increase in width or depth to a maximum allowable bearing pressure of 2,500 psf.

3.7 <u>Cement Type and Corrosion Protection</u>

Based on the results of laboratory testing, concrete structures in contact with the onsite soil will have negligible exposure to water-soluble sulfates in the soil. Therefore, common Type II cement may be used for concrete construction. Concrete should be designed in accordance with ACI 318-14, Section 4.2 (ACI, 2014), adopted by the 2022 CBC (Section 1904A.2).

Based on our laboratory testing, the onsite soil is considered corrosive to ferrous metals. Metallic utilities should be avoided, or typical corrosion protection of underground metallic utilities should be provided. Corrosion information presented in this report should be provided to your underground utility contractors.

3.8 Pavement Design

Based on the design procedures outlined in the current Caltrans Highway Design Manual, and an R-value of 25 for compacted subgrade soils, preliminary flexible pavement sections may consist of the following for the Traffic Indices (TI) indicated.

	Asphaltic Concrete	Class 2 Aggregate
Traffic Index	(AC) Thickness	Base (AB) Thickness
	(inches)	(inches)
5 or less (auto access)	4.0	4.0
7 (bus/truck access)	5.0	9.0

Table 3 – Aspha	alt Pavement Sectior	Thickness
-----------------	----------------------	-----------

If asphalt pavement is to be constructed prior to construction, the full pavement thickness should be placed to support heavy construction traffic.

In areas where rigid concrete pavement is planned and trucks may drive on this pavement, we recommend 7 inches of Portland Cement Concrete (PCC) with a 28-day compressive strength of 4,000 psi over 4 inches of aggregate base placed on prepared subgrade soil (see Section 3.2.2). Reinforcement should be specified

by the structural engineer, but should be a minimum of #3 rebar at 18 inches on center each way. The PCC pavement sections should be provided with crack-control joints spaced no more than 12 feet on center each way. If sawcuts are used, they should have a minimum depth of ¼ of the slab thickness and made within 24 hours of concrete placement. We recommend that sections be as nearly square as possible.

PCC sidewalks should be at least 4 inches thick over prepared subgrade soil, with construction joints no more than 8 feet on center each way, with sections as nearly square as possible. Use of reinforcing will help reduce severity of cracking.

All pavement construction should be performed in accordance with the Standard Specifications for Public Works Construction. Field observations and periodic testing, as needed during placement of the base course materials, should be undertaken to ensure that the requirements of the standard specifications are fulfilled. Prior to placement of aggregate base, the subgrade soil should be processed to a minimum depth of 6 inches, moisture-conditioned, as necessary, and recompacted to a minimum of 95 percent relative compacted t

3.9 <u>Temporary Excavations</u>

All temporary excavations, including utility trenches, retaining wall excavations and other excavations should be performed in accordance with project plans, specifications and all OSHA requirements, and the current edition of the California Construction Safety Orders, latest edition.

No surcharge loads should be permitted within a horizontal distance equal to the height of cut or 5 feet, whichever is greater from the top of the slope, unless the cut is shored appropriately. Excavations that extend below an imaginary plane inclined at 45 degrees below the edge of any adjacent existing site foundation should be properly shored to maintain support of the adjacent structures.

Cantilever shoring should be designed based on the active fluid pressure presented in the retaining wall section. If excavations are braced at the top and at specific design intervals, the active pressure may then be approximated by a

rectangular soil pressure distribution with the pressure per foot of width equal to 26H, where H (feet) is equal to the depth of the excavation being shored.

During construction, the soil conditions should be regularly evaluated to verify that conditions are as anticipated. The contractor should be responsible for providing the "competent person" required by OSHA, standards to evaluate soil conditions. Close coordination between the competent person and Leighton Consulting should be maintained to facilitate construction while providing safe excavations.

3.10 Trench Backfill

Utility-type trenches onsite can be backfilled with onsite material, provided it is free of debris, significant organic material and oversized material (greater than 3 inches for trench backfill within 3 feet of a pipe, and 6 inches for trench backfill above).

Prior to backfilling the trench, pipes should be bedded and shaded in a granular material that has a sand equivalent of 40 or greater. We recommend that opengraded crushed rock or similar material not be used as bedding material, unless special provisions are implemented to limit the migration of surrounding soil into the open-graded material, including surrounding the open-graded material with filter fabric (Mirafi 140N or equivalent), or mixing sand with the open-graded material. The bedding material should extend 12 inches above the top of the pipe. The bedding/shading sand should be densified in-place by mechanical means. Due to the clayey nature and low permeability of the near surface soils, bedding/shading should not be jetted. Bedding sand should be placed in accordance with the Standard Specifications for Public Works Construction – Greenbook (Public Works Standard, Inc.), current edition.

The native soil fill should be placed in loose layers, moisture conditioned, as necessary, and mechanically compacted using a minimum standard of 90 percent relative compaction based on ASTM D1557. The thickness of layers should be based on the compaction equipment used in accordance with the current Greenbook.

3.11 Surface Drainage

Water should not be allowed to pond or accumulate anywhere except in approved drainage areas, which should be set back at least 15 feet from proposed

structures. Pad drainage should be designed to collect and direct surface water away from structures to approved drainage facilities. Hardscape drains should be installed and drain to storm water disposal systems. Drainage patterns and drainpipes approved at the time of fine grading should be maintained throughout the life of proposed structures. Percolation or stormwater infiltration should not be allowed within at least horizontal 15 feet of the proposed building addition.

3.12 Infiltration Recommendations

Based on our onsite observations, laboratory testing, and infiltration test results summarized in Section 2.10 and presented in Appendix B, reliance of infiltration into onsite native soils is not recommended. Soils within the upper 20 feet contained high amounts of fines (silt and clay), which yielded low infiltration rates during our testing. The soils encountered deeper than 20 feet consisted of clayey sands, gravels with clay, and sandy clays with high variation of fines. Based on the infiltration tests, infiltration of storm water at the site is generally considered not feasible.

3.13 Limitations and Additional Geotechnical Services

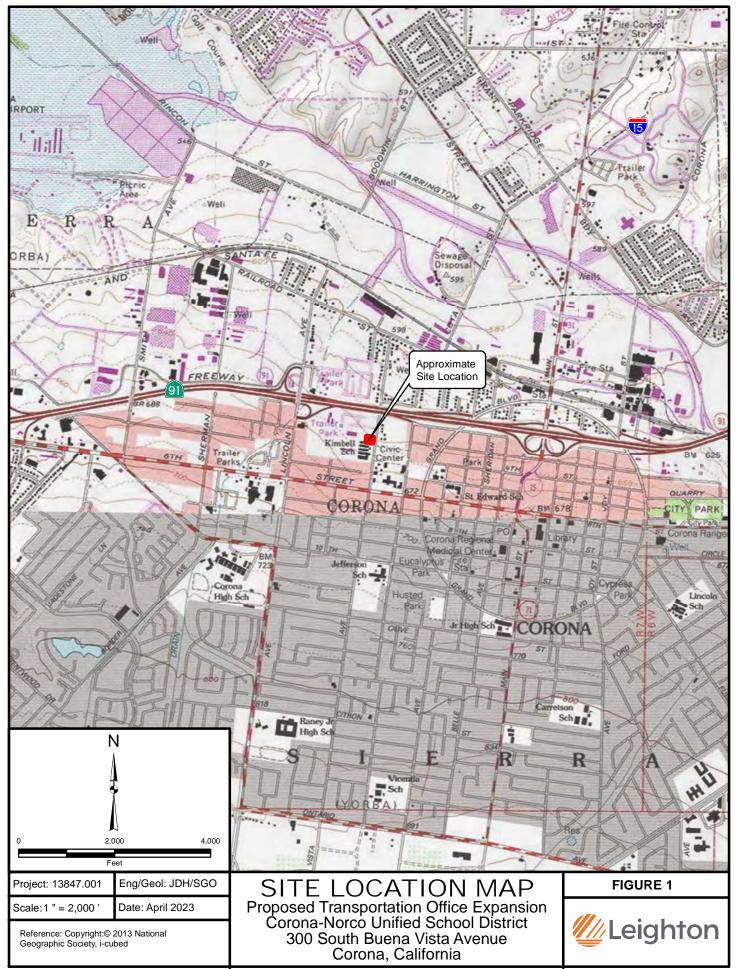
The geotechnical recommendations presented in this report are based on subsurface conditions as interpreted from limited subsurface explorations and limited laboratory testing. Our geotechnical recommendations provided in this report are based on information available at the time the report was prepared and may change as plans are developed. However, additional geotechnical study and analysis may be required based on final development plans. Leighton Consulting should review the site and grading plans when available and comment further on the geotechnical aspects of the project. Geotechnical observation and testing should be conducted during excavation and all phases of grading operations. Our conclusions and preliminary recommendations should be reviewed and verified by Leighton Consulting during construction and revised accordingly if geotechnical conditions encountered vary from our findings and interpretations. Changes in subsurface conditions can and do occur over time. Therefore, our findings, conclusions, and recommendations presented in this report are based on the assumption that Leighton Consulting will provide geotechnical observation and testing during construction. Please refer to the GBC "Important Information about This Geotechnical Engineering Report" presented at the end of this report.

Environmental services were not included as part of this study. This report was prepared for the sole use of Corona-Norco Unified School District for application to the design of the proposed project in accordance with generally accepted geotechnical engineering practices at this time in California.

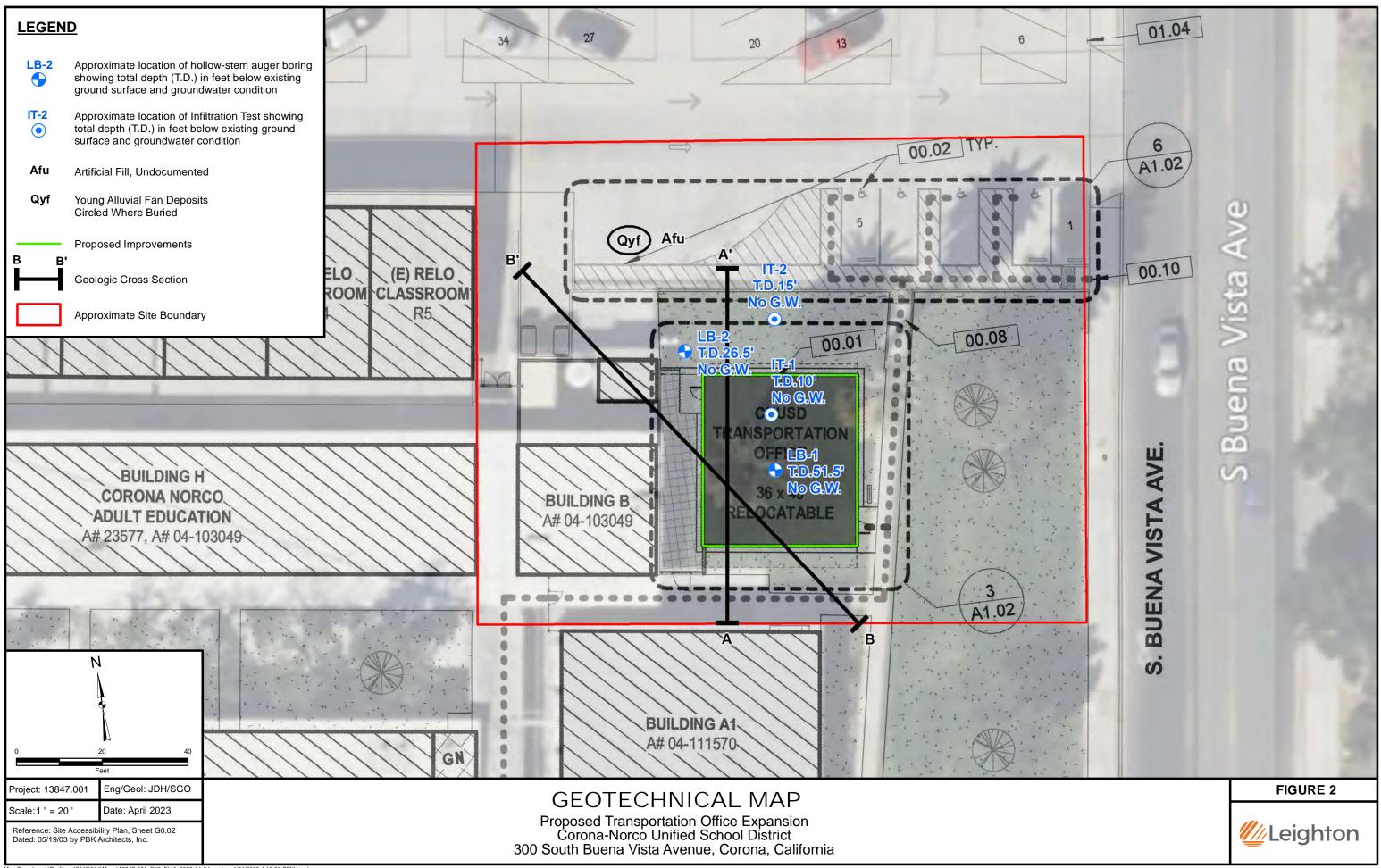
Geotechnical observation and testing should be provided:

- After completion of site demo/clearing.
- During overexcavation of compressible soil.
- During compaction of all fill materials.
- After excavation of all footings and prior to placement of concrete.
- During utility trench backfilling and compaction.
- During pavement subgrade and base preparation.
- When any unusual conditions are encountered.

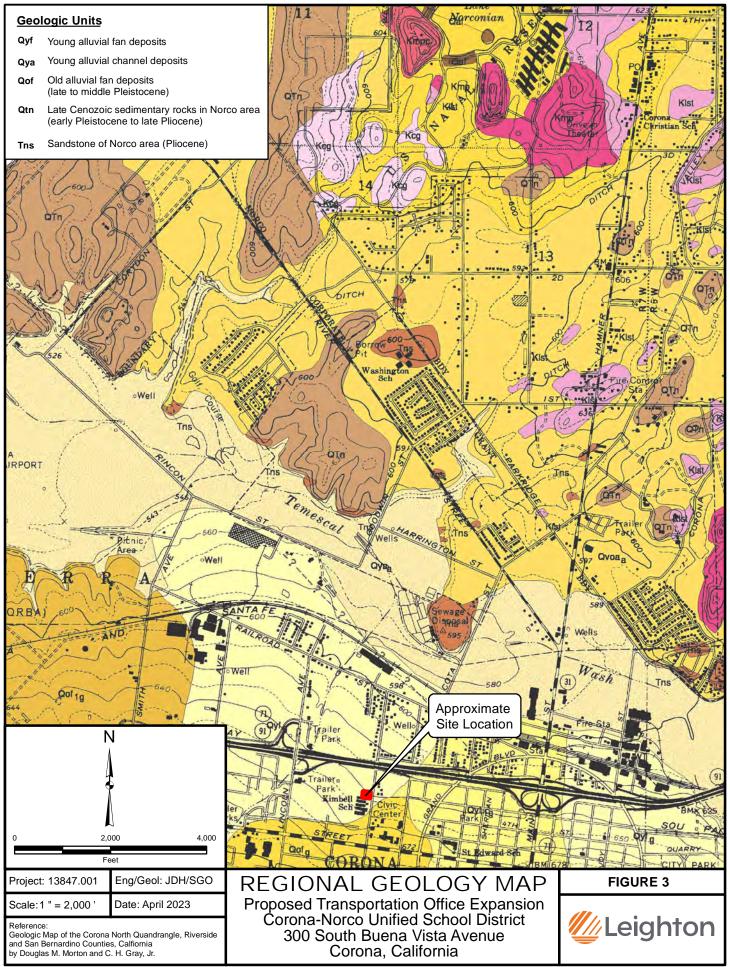
Until reviewed and accepted by the California Geologic Survey (CGS), this report may be subject to change. Changes may be required as part of the CGS review process. Leighton Consulting, Inc. assumes <u>no</u> risk or liability for consequential damages that may arise due to design work progressing before this report is reviewed and accepted by CGS.

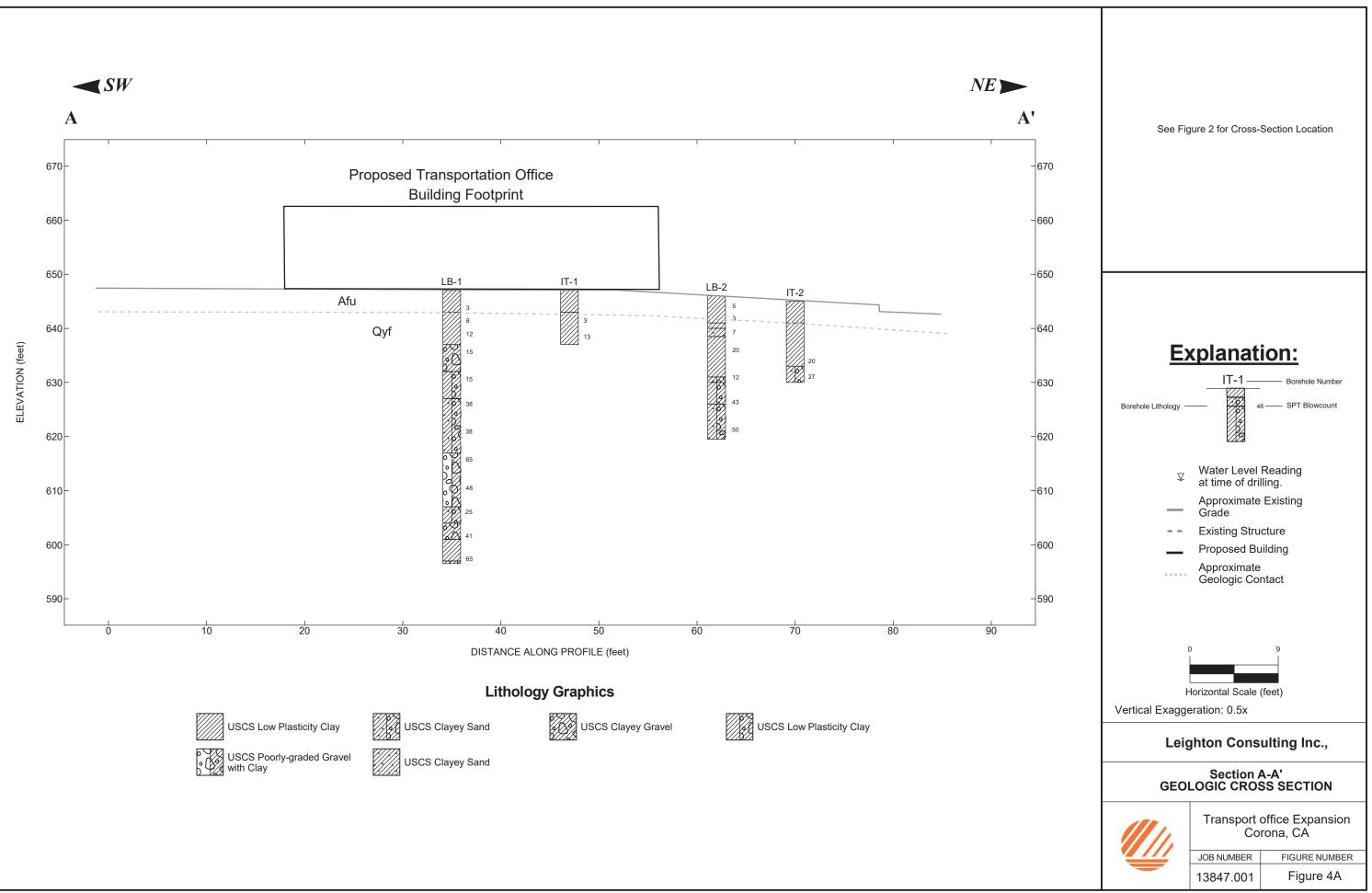

REFERENCES

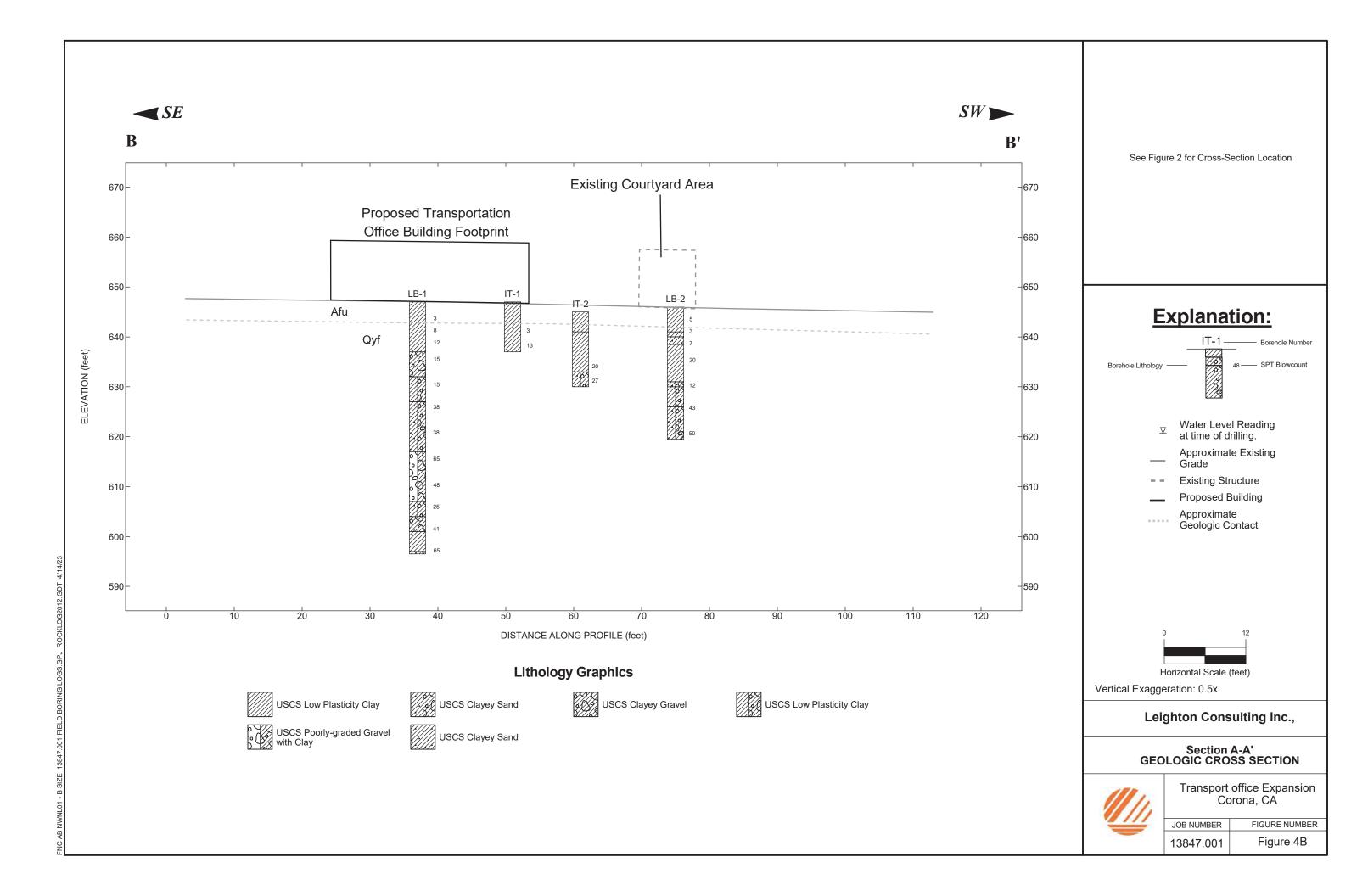
- American Concrete Institute (ACI), 2014, Building Code Requirements for Structural Concrete (ACI 318-14) and Commentary (ACI 318-14), an ACI Standard.
- California Building Standards Commission, 2022, 2022 California Building Code, California Code of Regulations, Title 24, Part 2, Volume 2 of 2, Based on 2021 International Building Code, Effective January 1, 2023.
- California Department of Water Resources (CDWR) 2023a, Sustainable Groundwater Management Act Data Viewer Tool, Website: <u>https://sgma.water.ca.gov/webgis/?appid=SGMADataViewer#gwlevels</u>; accessed March 31 20223.
- California Department of Water Resources (CDWR) 2023b, Dam Breach Inundation Map Web Publisher Tool, Website: <u>https://sgma.water.ca.gov/webgis/?appid=SGMADataViewer#gwlevels</u>, accessed March 31, 2023.
- California Geologic Survey (CGS), 2008, Guidelines for Evaluating and Mitigating Seismic Hazards in California, Special Publication 117A, Revised and Re-Adopted on September 11, 2008, Laguna Beach, California.
- California Geologic Survey (CGS), 2023, Earthquake Zones of Required Investigation, website: <u>https://maps.conservation.ca.gov/cgs/EQZApp/app</u>, accessed March 31, 2023.
- Federal Emergency Management Agency (FEMA), 2023, Flood Map Service Center Tool, Website: <u>https://msc.fema.gov/portal/home</u>; accessed April 5, 2023.
- Gray, C.H., Morton, D.M., Weber, F.H., Bovard, K.R., Dawson, M., 2002, Geologic Map of the Corona North 7.5' Quadrangle, Riverside and San Bernardino Counties, California, U.S. Geological Survey Open-File Report OF-2022-02, scale 1:24,000.
- Martin, G. R., and Lew, M., ed., 1999, "Recommended Procedures for Implementation of DMG Special Publication 117, Guidelines for Analyzing and Mitigating Liquefaction Hazards in California," Southern California Earthquake Center, dated March 1999.

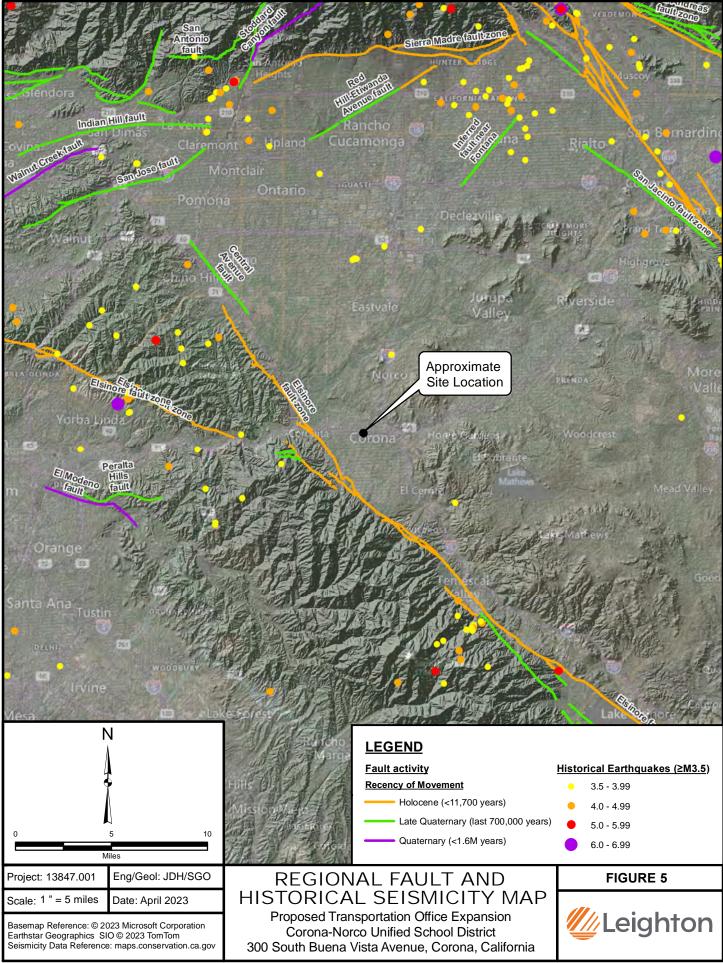


- Morton, D.M., Miller, F.K., 2006, Geologic Map of the San Bernardino and Santa Ana 30' x 60' Quadrangles, California, U.S. Geological Survey Open-File Report OF-2006-1217, scale 1:100,000.
- Office of Statewide Health Planning and Development (OSHPD) and Structural Engineers Association of California (SEAOC), 2023, Seismic Design Maps web tool, https://seismicmaps.org, accessed March 22, 2023.
- Public Works Standard, Inc., 2018, Greenbook, Standard Specifications for Public Works Construction: BNI Building News, Anaheim, California.
- Riverside County, 2023, Riverside County Information Technology (RCIT) Riverside County Map My County web tool, website: <u>https://gis1.countyofriverside.us/Html5Viewer/index.html?viewer=MMC_Public</u>, accessed on March 22. 2023.
- Tokimatsu, K., Seed, H. B., 1987, "Evaluation of Settlements in Sands Due to Earthquake Shaking," *Journal of the Geotechnical Engineering*, American Society of Civil Engineers, Vol. 113, No. 8, pp. 861-878.
- United States Geologic Survey (USGS), 2023a, Earthquake Hazards Program, Unified Hazard Tool, website: <u>https://earthquake.usgs.gov/hazards/interactive</u>, accessed March 22, 2023.
- United States Geologic Survey (USGS), 2023b, Areas of Land Subsidence in California, website: <u>https://ca.water.usgs.gov/land_subsidence/california-subsidence-areas.html</u>, accessed March 22, 2023
- Youd, T.L, Idriss, I.M., Andrus, R.D., Arango, I., Castro, G., Christian, J.T., Dobry, R., Finn, L., Harder, L.F., Hynes, M.E., Ishihara, K., Koester, J.P., Liao, S.C., Marcuson, W.F. III, Martin, G.R., Mitchell, J.K., Moriwaki, Y., Power, M.S., Robertson, P.K., Seed, R.B., Stokoe, K.H. II, 2001, "Liquefaction Resistance of Soils: Summary Report from the 1996 NCEER and 1998 NCEER/NSF Workshops on Evaluation of Liquefaction Resistance of Soils", Journal of Geotechnical and Geoenvironmental Engineering, Vol. 127, No. 10, October 2001.

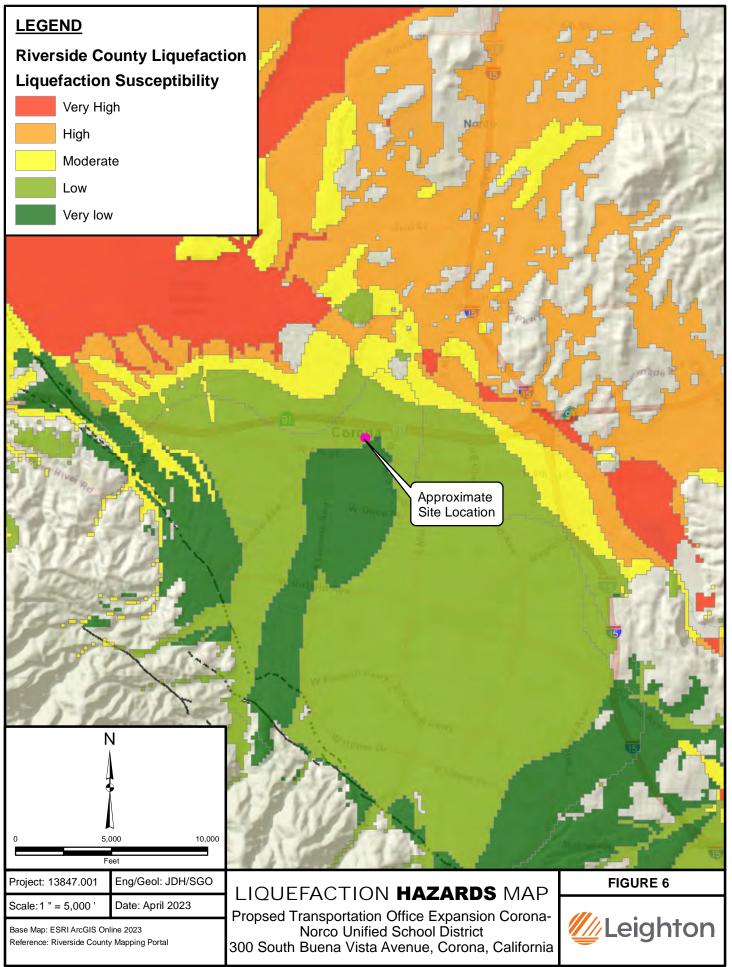


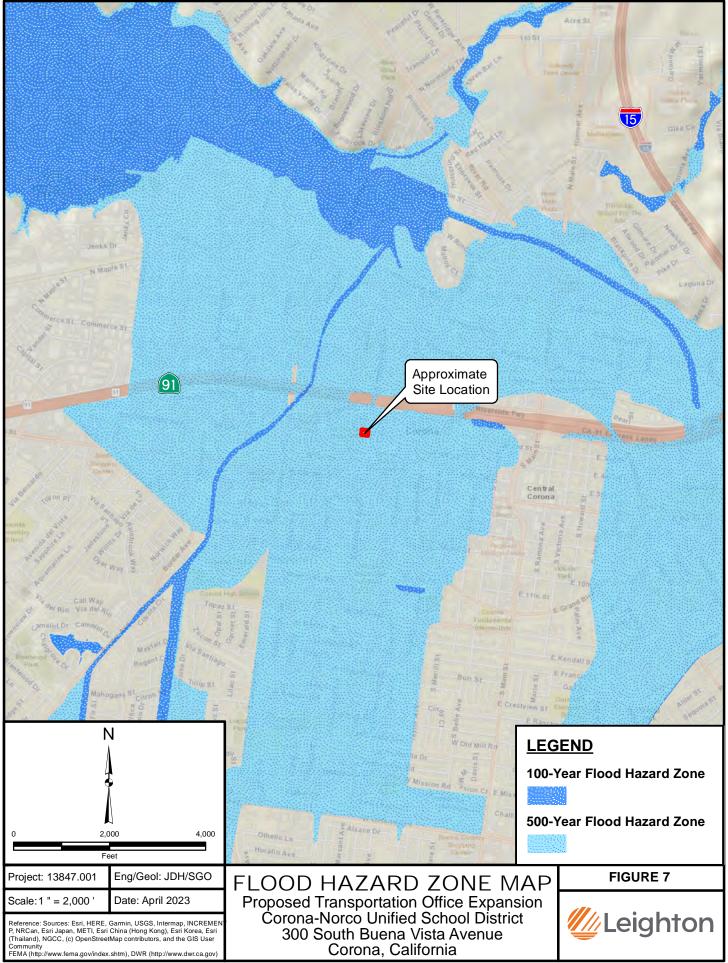

Map Saved as J:\Drafting\13847\001\Maps\13847-001_F01_SLM_2023-04-14.mxd on 3/20/2023 10:20:42 AM Author: KVM (btran)

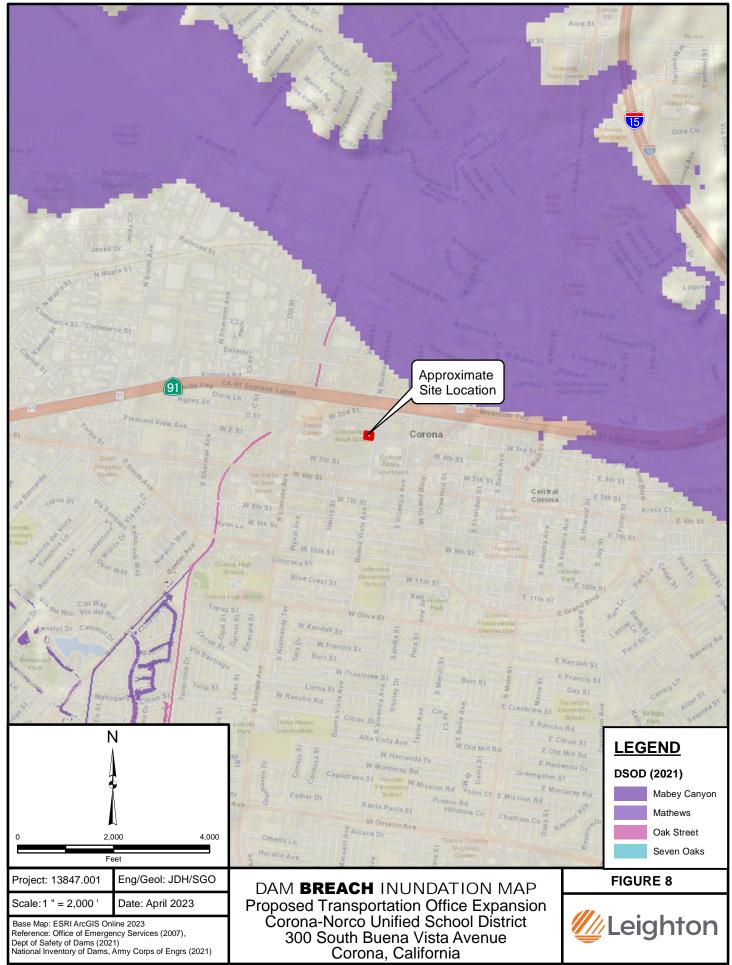

Map Saved as J:\Drafting\13847\001\Maps\13847-001_F02_ELM_2023-04-24.mxd on 4/24/2023 4:12:57 PM(btran)



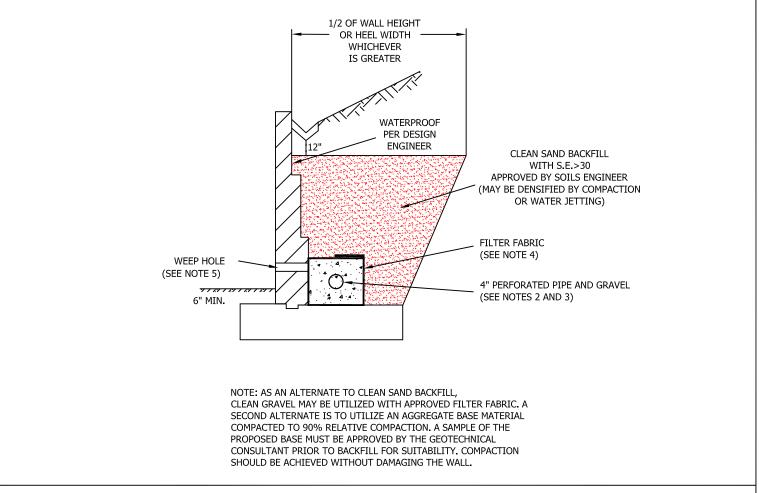
Map Saved as J:\Drafting\13847\001\Maps\13847-001_F03_RGM_2023-04-13.mxd on 3/20/2023 10:39:03 AM Author: KVM (btran)




AB NWNL01 - B SIZE 13847.001 FIELD BORING LOGS.GPJ ROCKLOG2012.GDT 4/14/23



Map Saved as J:\Drafting\13847\001\Maps\13847-001_F05_RFHSM_2023-04-13.mxd on 3/20/2023 10:40:30 AM (btran)



Map Saved as J:\Drafting\13847\001\Maps\13847-001_F07_FHZM_2023-04-13.mxd on 3/20/2023 11:01:56 AM Author: KVM (btran)

Map Saved as J:\Drafting\13847\001\Maps\13847-001_F08_DIM_2023-04-13.mxd on 3/20/2023 11:04:08 AM (btran)

SUBDRAIN OPTIONS AND BACKFILL WHEN NATIVE MATERIAL HAS EXPANSION INDEX OF >50

GENERAL NOTES:

* Waterproofing should be provided where moisture nuisance problem through the wall is undesirable.

* Water proofing of the walls is not under purview of the geotechnical engineer

* All drains should have a gradient of 1 percent minimum

*Outlet portion of the subdrain should have a 4-inch diameter solid pipe discharged into a suitable disposal area designed by the project engineer. The subdrain pipe should be accessible for maintenance (rodding)

*Other subdrain backfill options are subject to the review by the geotechnical engineer and modification of design parameters.

Notes:

1) Sand should have a sand equivalent of 30 or greater and may be densified by water jetting.

2) 1 Cu. ft. per ft. of 1/4- to 1 1/2-inch size gravel wrapped in filter fabric

3) Pipe type should be ASTM D1527 Acrylonitrile Butadiene Styrene (ABS) SDR35 or ASTM D1785 Polyvinyl Chloride plastic (PVC), Schedule 40, Armco A2000 PVC, or approved equivalent. Pipe should be installed with perforations down. Perforations should be 3/8 inch in diameter placed at the ends of a 120-degree arc in two rows at 3-inch on center (staggered)

4) Filter fabric should be Mirafi 140NC or approved equivalent.

5) Weephole should be 3-inch minimum diameter and provided at 10-foot maximum intervals. If exposure is permitted, weepholes should be located 12 inches above finished grade. If exposure is not permitted such as for a wall adjacent to a sidewalk/curb, a pipe under the sidewalk to be discharged through the curb face or equivalent should be provided. For a basement-type wall, a proper subdrain outlet system should be provided.

6) Retaining wall plans should be reviewed and approved by the geotechnical engineer.

7) Walls over six feet in height are subject to a special review by the geotechnical engineer and modifications to the above requirements.

RETAINING WALL BACKFILL AND SUBDRAIN DETAIL WHEN NATIVE MATERIAL HAS EXPANSION INDEX OF >50 APPENDIX A

GEOTECHNICAL EXPLORATION LOGS

APPENDIX A

GEOTECHNICAL BORING LOGS

The field investigation consisted of a surface reconnaissance and a subsurface exploration program. Encountered soils were continuously logged in the field by our representative and described in accordance with the Unified Soil Classification System (ASTM D2488). Logs of these subsurface explorations are included as part of this appendix.

Borings were drilled with a truck-mounted hollow-stem drill rig. Relatively undisturbed soil samples were obtained at selected intervals within the borings using a California Ring Sampler and a Standard Penetration Test (SPT) split-spoon sampler. Bulk samples of representative soil types were also obtained from the borings. These samples were transported to our geotechnical laboratory for evaluation and appropriate testing. Borings were backfilled with the excavated earth materials after logging and sampling was completed.

The attached subsurface exploration logs and related information depict subsurface conditions only at the locations indicated and at the particular date designated on the logs. Subsurface conditions at other locations may differ from conditions occurring at these locations. The passage of time may result in altered subsurface conditions due to environmental changes. In addition, any stratification lines on the logs represent the approximate boundary between soil types and the transition may be gradual.

GEOTECHNICAL BORING LOG LB-1

Proj	ject No	D .	13847	7.001					Date Drilled	3-16-23	
Proj	ect	-		SD Trans	sport off	fice Ex	pansio	on	Logged By	BTM	
-	ing Co	·).		ni Drilling		^			Hole Diameter	8"	
Drill	ing Me	ethod		w Stem A		Autoh	amme	r	Ground Elevation	647'	
Loc	ation	-		- igure 2					Sampled By	BTM	
Elevation Feet	Depth Feet	Graphic Log	Attitudes	Sample No.	Blows Per 6 Inches	Dry Density pcf	Moisture Content, %	Soil Class. (U.S.C.S.)	SOIL DESCRIPTION This Soil Description applies only to a location of the explor time of sampling. Subsurface conditions may differ at other and may change with time. The description is a simplificative actual conditions encountered. Transitions between soil typ gradual.	r locations on of the	Type of Tests
	0	N S		B-1	T			CL	Undocumented Artificial Fill (afu)		SA, MD,
645-	_			R-1	2 2	101	21	CL	 @Surface: Grass over SANDY CLAY (CL), dark brown, i to coarse sand, rootlets, medium plasticity, 64% fines @2.5': Lean CLAY with SAND (CL), soft, dark brown, m medium plasticity, rootlets, 65% fines (field estimate) 	(lab)	EI, CR
	_										
640-	5— — —			R-2	push 4 8	101	22	CL	Young Alluvial Fan Deposits (Qyf) @5': Lean CLAY with SAND (CL), medium stiff, moist, f coarse sand, medium plasticity, slightly laminated, roo sample, 85%fines (field estimate)	ine to ots in	
	_			R-3	5 8 11	118	15	CL	@7.5': SANDY CLAY (CL), stiff, orange brown, moist, fin coarse sand, trace fine gravel, low to medium plasticit small discolored inclusions, 60-70% fines (field estimation)	tv. some	
635-	10— — —			R-4	7 12 11	113	8	GC	@10': CLAYEY GRAVEL with SAND (GC), medium dens brown, moist, fine to coarse sand, some fine to coarse low plasticity, 18% fines (lab)		-200, AL
630-	 15 			S-5	2 5 10			(CL)g	@15': SANDY CLAY with GRAVEL (CL)g, stiff, orange b moist, fine to coarse sand, few fine gravel, low plastic 50%-60% fines (Field estimate)	rown, ity,	
625-	 20 			R-6	8 29 30	126	5	(SC)g	@20': CLAYEY SAND with GRAVEL (SC)g, dense, med moist, fine to coarse sand, significant amount of fine t gravel, low plasticity, 25%-35% fines (field estimate) @21': Rig Chatter		
620-				S-7	11 18 20			(SC)g	@25': CLAYEY SAND with GRAVEL (SC)g, medium der brown, moist, low plasticity, approximate 4" interbed GRAVELLY SANDY CLAY		
B C G R S	30 DLE TYP BULK S CORE S GRAB S RING S SPLIT S TUBE S	SAMPLE SAMPLE SAMPLE AMPLE SPOON SA	MPLE	AL AT CN CO CO CO CR CO	ESTS: FINES PAS TERBERG NSOLIDA LLAPSE RROSION DRAINED	LIMITS TION	EI H MD PP	EXPAN HYDRO MAXIM	SHEAR SA SIEVE ANALYSIS SION INDEX SE SAND EQUIVALENT METER SG SPECIFIC GRAVITY UM DENSITY UC UNCONFINED COMPRESSIVE T PENETROMETER STRENGTH IE	Leig	hton

GEOTECHNICAL BORING LOG LB-1

Proj	ject No	0.	1384	7.001					Date Drilled	3-16-23	
Proj				SD Tran	sport off	fice Ex	pansio	on	Logged By	BTM	
Drill	ing Co	D.		ni Drillin					Hole Diameter	8"	
Drill	ing M	ethod	Hollo	w Stem	- Auger -	Autoh	amme	er	Ground Elevation	647'	
Loc	ation		See F	Figure 2	- Geote	chnica	l Map		Sampled By	BTM	
Elevation Feet	Depth Feet	E Graphic Log	Attitudes	Sample No.	Blows Per 6 Inches	Dry Density pcf	Moisture Content, %	Soil Class. (U.S.C.S.)	SOIL DESCRIPTION This Soil Description applies only to a location of the exploit time of sampling. Subsurface conditions may differ at othe and may change with time. The description is a simplificate actual conditions encountered. Transitions between soil ty gradual.	r locations ion of the	Type of Tests
615-	30— — —			R-8	30 50/5"			GP-GC	@30': Poorly-graded GRAVEL with CLAY and SAND (G very dense, moist, 7% fines (lab)	P-GC),	-200
610-				S-9	15 29 19			GP-GC	@35':Poorly-graded GRAVEL with CLAY and SAND (Gf dense, medium brown to reddish brown, moist, fine to sand, fine gravel, low plasticity, 10% fines (field estim approximate 4" of SANDY CLAY with GRAVEL at botto sample	o coarse late)	
605-	40			R-10	5 12 26			(SC)g	@40': CLAYEY SAND with GRAVEL (SC)g, medium de medium brown, moist, low plasticity, fine to coarse sa fine gravel, 36% fines (lab) (bottom 6") higher concentration of gravel in matrix	nse, Ind, few	-200, AL
600-				S-11	26 27 14			GC CL	 @45': CLAYEY GRAVEL with SAND (GC), dense, brow fine to coarse sand, 15%-25% fines (field estimate) @46': SILTY CLAY with SAND (CL), hard, medium brow low plasticity, few fine to coarse sand, 90% fines (field) 	/n, moist,	
595-	50 	<u>\$727×375</u> 		R-12	► 50/6"			GC	 @50': CLAYEY GRAVEL with SAND (GC), very dense, moist, fine to coarse sand, some fine gravel, low plas 20%-30% fines (field estimate) TOTAL DEPTH = 50.5 FEET NO GROUND WATER ENCOUNTERED TO EXPLORED BACKFILLED WITH SOIL CUTTINGS 	ticity,	
590 -	55— — — —										
B C G R S	CORE S GRAB S RING S	SAMPLE SAMPLE SAMPLE AMPLE SPOON SA	MPLE	AL AT CN CC CO CC CR CC	TESTS: FINES PAS FIRES PAS CITERBERG ONSOLIDA OLLAPSE ORROSION NDRAINED	LIMITS TION	EI H MD PP	HYDRO MAXIMI	SION INDEX SE SAND EQUIVALENT METER SG SPECIFIC GRAVITY JM DENSITY UC UNCONFINED COMPRESSIVE T PENETROMETER STRENGTH	///Leig	hton

GEOTECHNICAL BORING LOG LB-2

-	ject No	0.	1384						Date Drilled	3-16-23	
Proj				SD Trans	port off	fice Ex	pansic	on	Logged By	BTM	
	ing Co		Marti						Hole Diameter	8"	
Drill	ing M	ethod		ni Drilling					Ground Elevation	646'	
Loc	ation		See I	-igure 2	Geote	chnica	l Map		Sampled By	BTM	
Elevation Feet	Depth Feet	z Graphic v	Attitudes	Sample No.	Blows Per 6 Inches	Dry Density pcf	Moisture Content, %	Soil Class. (U.S.C.S.)	SOIL DESCRIPTION This Soil Description applies only to a location of the explore time of sampling. Subsurface conditions may differ at other and may change with time. The description is a simplification actual conditions encountered. Transitions between soil typ gradual.	locations on of the	Type of Tests
645-	0			B-1				CL	<u>Undocumented Artificial Fill (afu)</u> @Surface: grass over SANDY CLAY (CL), dark brown, n to coarse sand, rootlets, medium plasticity, 70%-80% estimate)	noist, fine fines (field	
	-			R-1	3 3 4	100	22	CL	@2.5': SANDY CLAY (CL), medium stiff, dark brown, mc medium sand, rootlets, medium plasticity, 80%-90% f estimate)		
640-	-			R-2 R-3	1 2 3 3 4	105	20	CL SC CL	Young Alluvial Fan Deposits (Qyf) @5": SANDY CLAY (CL), soft, dark brown, moist, fine to sand, rootlets, medium plasticity, 80%-90% fines (field grades to CLAYEY SAND, loose, dark brown, moist, fine sand, few fine gravel, low plasticity, 25%-35% fines (fi estimate)	d estimate) to coarse eld	СО
635-	 10 			R-4	6 6 12 19	118	15	CL	 @7.5': Lean CLAY with SAND (CL), medium stiff, brown, fine sand, roots and rootlets, low plasticity, 85%-95% estimate) @10': SANDY CLAY (CL), very stiff, brown, moist, fine to sand, few subangular fine gravel, medium plasticity, 7 fines (field estimate) 	fines (field coarse	
630-	 15 			R-5	11 10 9			(SC)g (CL)g	@15': CLAYEY SAND with GRAVEL (SC)g, medium der to reddish brown, moist, fine to coarse sand, significal of fine gravel, low plasticity, 46% fines (lab) grades back to SANDY CLAY with GRAVEL (CL)g, brow reddish brown, moist, low to medium plasticity, 65%-7 (field estimate)	nt amount n to	-200
625-	 20 			S-6	11 21 22			(SC)g	@20': CLAYEY SAND with GRAVEL (SC)g, medium der moist, fine to coarse sand, 20%-30% fine gravel, low j 20%-30% fines (field estimate)	ise, brown, olasticity,	
620-				R-7	12 33 44			(SC)g	 @25': CLAYEY SAND (SC)g, very dense, brown, moist, coarse sand, 20%-30% fine gravel, low plasticity, 20% fines (field estimate) TOTAL DEPTH = 26.5 FEET NO GROUND WATER ENCOUNTERED TO EXPLORED I BACKFILLED WITH SOIL CUTTINGS 	-35%	
B C G R S	GRAB S	Sample Sample Sample Ample Spoon Sa	MPLE	AL ATT CN COI CO COI CR COI	ESTS: INES PAS TERBERG NSOLIDA LLAPSE RROSION DRAINED	LIMITS TION	EI H MD PP	EXPAN HYDRO MAXIM	JM DENSITY UC UNCONFINED COMPRESSIVE 🗧 T PENETROMETER STRENGTH	Leigh	nton

GEOTECHNICAL BORING LOG IT-1

Proj Drill Drill	ject No ect ing Co ing Mo ation	D .	Martir Hollov	7.001 SD Trans ni Drilling w Stem / Figure 2	l Auger -	Autoh	iamme		Date Drilled Logged By Hole Diameter Ground Elevation Sampled By	3-16-23 BTM 8" 647' BTM	
Elevation	Depth Feet	≤ Graphic Log	Attitudes	Sample No.	Blows Per 6 Inches	Dry Density pcf	Moisture Content, %	Soil Class. (U.S.C.S.)	This Soil Description applies only to a location of the explor time of sampling. Subsurface conditions may differ at othe and may change with time. The description is a simplificati actual conditions encountered. Transitions between soil ty gradual.	ation at the r locations on of the	Type of Tests
645-	0— — —				_			CL	Undocumented Artificial Fill (afu) @Surface: grass over SANDY CLAY(CL), dark brown, n to coarse sand, rootlets, moderate plasticity, 70%-80 (field estimate)	noist, fine % fines	
640-	5 			S-1	push 1 2			CL	Young Alluvial Fan Deposits (Qyf) @5': Lean CLAY with SAND (CL), soft, dark brown, mois sand, low plasticity, 70%-80% fines (field estimate)		
635-	 10			S-2	3 5 8			CL	 @8.5': CLAY with SAND (CL), stiff, brown, moist, fine to sand, rootlets, medium plasticity, 74% fines (lab) TOTAL DEPTH = 10 FEET NO GROUND WATER ENOUNTERED TO EXPLORED D CONVERTED BORING TO WELL PERMEAMETER TEST BACKFILLED WITH SOIL CUTTINGS AFTER COMPLET 	DEPTH FING	-200, AL
630-	 15 				-				OF TESTING		
625-											
620- SAME		ES:		TYPE OF T							
B C G R S	BULK S CORE S GRAB S RING S	SAMPLE SAMPLE SAMPLE AMPLE SPOON SA	MPLE	-200 % I AL AT CN CO CO CO CR CO	ESTS: FINES PAS TERBERG NSOLIDA LLAPSE RROSION DRAINED	ILIMITS	DS El H MD PP	EXPAN HYDRO MAXIM	SHEAR SA SIEVE ANALYSIS SION INDEX SE SAND EQUIVALENT METER SG SPECIFIC GRAVITY UM DENSITY UC UNCONFINED COMPRESSIVE T PENETROMETER STRENGTH E	Leig	hton

GEOTECHNICAL BORING LOG IT-2

Proj	ject No ect ing Co			SD Tran	-	fice Ex	pansic	on	Date Drilled Logged By	3-16-23 BTM	
	ing M			<u>ni Drillin</u> w Stem /	-	Autob	amme		Hole Diameter Ground Elevation	<u>8"</u> 645'	
	ation			Figure 2	0			;1	Sampled By	BTM	
Elevation Feet	Depth Feet	Graphic Log	Attitudes	Sample No.	Blows Per 6 Inches	Dry Density pcf	Moisture Content, %	Soil Class. (U.S.C.S.)	Soil Description applies only to a location of the explor time of sampling. Subsurface conditions may differ at othe and may change with time. The description is a simplificati actual conditions encountered. Transitions between soil ty gradual.	ation at the r locations ion of the	Type of Tests
645-	0							CL	<u>Undocumented Artificial Fill (afu)</u> @Surface: Grass over SANDY CLAY (CL), moist, fine to sand, rootlets, medium plasticity, 70%-80%fines (field	o coarse d estimate)	
640-	5 							CL	Young Alluvial Fan Deposits (Qyf) @5': Lean CLAY with SAND (CL), soft, dark brown, mois sand, low plasticity, 70%-80% fines (field estimate)	— — — — — — — — — — — — — — — — — — —	
6 35-	10— — —			S-1	4 7 13			(CL)g (SC)g	 @10': SANDY CLAY with GRAVEL (CL)g, very stiff, red moist, fine to coarse sand, few fine gravel, low to me plasticty, 75%-85% fines (field estimate) @12': CLAYEY SAND with GRAVEL (SC)g, 15% fines (estimate) 	dium	
630 -	 			S-2	8 12 15			(SC)g	 @13.5': CLAYEY SAND with GRAVEL (SC)g, medium of brown, moist, fine to coarse sand, low plasticity, 15% 13% fines (lab) TOTAL DEPTH =15 FEET NO GROUND WATER ENCOUNTERED AT EXPLORED CONVERTED BORING TO WELL PERMEAMETER TES' BACKFILLED WITH SOIL CUTTINGS AFTER COMPLET OF TESTING 	gravel, DEPTHS FING	-200
625-	 20 										
620-											
B C G R S	GRAB S	Sample Sample Sample Ample Spoon S <i>i</i>	AMPLE	AL AT CN CC CO CC CR CC	TESTS: FINES PAS TERBERG ONSOLIDA OLLAPSE ORROSION IDRAINED	ELIMITS TION	DS EI H MD PP	EXPAN HYDRO MAXIM	SHEAR SA SIEVE ANALYSIS SION INDEX SE SAND EQUIVALENT METER SG SPECIFIC GRAVITY UM DENSITY UC UNCONFINED COMPRESSIVE T PENETROMETER STRENGTH JE	Leigl	nton

							49 12.3 94.4	Cross-sectional area for flow calcs based on Δh 3 Well pack sand porosity 0.3 4 Casing outer diameter, in. 2.3													
Well Prep: Depth to bottom	Drilled to 10',	red from top re top of aug	o of auge	r (or ground surfa	<u>ft</u> 10. ft 0. ft	in.	Total (in 120 3.5 Calcula	. <i>.)</i>		vell bottom	below 1	top of c	asing (in):	124				U	se of F	of Barrels: low Meter: Test Type:	No No Falling Head
Date Start Date	Time Start time:	Data from Mete Reading (gallons)		Depth to WL in Boring (measured from top of casing)	Water Temp (deg F)	Refilled? (or Comments)	Δt (min)	Total Elapsed Time (min)	Depth to WL in well (in.)	h, Height of Water in Well (in.)	∆h (in.)	Avg. h	Vol Cl from supply	hange (from ∆h	in.^3) Total	Flow (in^3/ min)	q, Flow (in^3/ hr)	Average Infiltration Surface Area, (in^2)	V (Fig 9)	K20, Coef. Of Perme- ability at 20 deg C (in./hr)	Infiltration Rate [flow/surf area] (in./hr) (FS=1)
3/16/2023	15:20	Gallons		ft in. 5.54				10	63.0	57.0											
3/16/23 3/16/23	15:30 15:35			5.54 5.75			5	10 15	63.0 65.5	57.0 54.5	-2.52	56	0	44	44	9	523		0.9	0.06	0.33
3/16/23	15:40			5.85			5	20	66.7	53.3	-1.2	54	0	21	21	4	249		0.9	0.03	0.16
3/16/23	15:45			5.93			5	25	67.7	52.3	-0.96	53	0	17	17	3	199		0.9	0.03	0.13
3/16/23 3/16/23	15:50 15:55			5.99 6.05			5 5	30 35	68.4 69.1	51.6 50.9	-0.72 -0.72	52 51	0	12 12	12 12	2	149 149		0.9	0.02	0.10
3/16/23	16:00			6.09			5	40	69.6	50.4	-0.48	51	0	8	8	2	100		0.9	0.01	0.07
3/16/23	16:10			6.2			10	50	70.9	49.1	-1.32	50	0	23	23	2	137		0.9	0.02	0.10
3/16/23 3/16/23	16:20 16:30			6.26 6.32			10 10	60 70	71.6 72.3	48.4 47.7	-0.72 -0.72	49 48	0	12 12	12 12	1	75 75		0.9	0.01	0.05
3/16/23	16:40			6.38			10	80	73.1	46.9	-0.72	40	0	12	12	1	75		0.9	0.01	0.05
3/16/23	16:50			6.44			10	90	73.8	46.2	-0.72	47	0	12	12	1	75		0.9	0.01	0.06
3/16/23	17:00			6.5 6.55			10 10	100	74.5 75.1	45.5 44.9	-0.72 -0.6	46 45	0	12 10	12 10	1	75		0.9	0.01	0.06
3/16/23 3/16/23	17:10 17:20			6.59			10	110 120	75.1	44.9	-0.6	45	0	8	8	1	62 50		0.9	0.01	0.05
3/16/23	17:30			6.63			10	130	76.1	43.9	-0.48	44	0	8	8	1	50		0.9	0.01	0.04
				Conclude	d Test Po	or Infiltration															
																					r
																					<u> </u>
																				-	
																\vdash					
																-					
												L									
																├──					
																<u> </u>					<u> </u>
																					
														-					-		<u> </u>
																					
																					<u> </u>
																		Minimu	Im Rate:		0.04
													Raw Rat	e for de	esign, prie	or to app	lication of	adjustment	factors:		0.06

Project: Exploration #/Lo	cation:	ling H	lead	Infiltrati 13847.001 IT-1	on T	est			Ir	iitial estima Averaç			r in well, "ł	n" (in.):	50		Cr	oss-section	ial area		cs based on ∆ł
Depth Boring dri Tested by: USCS Soil Type in Weather (start to Water Source/pl	test zone: o finish):			15 BTM CL/SC Sunny H2O									Tu (Fig					Casi Casi	ng outer ing inner	and porosity diameter, in. diameter, in. al area, in.^2	2.3 2.1
Measured borin Depth to GW or aq Well Prep:	n <mark>g diameter:</mark> quitard, bgs: Drilled to 15',			8 in. 100 ft , slotted 2" pipe fo		in. Well Ra 5 feet, sand a <u>in.</u>			ion									U		of Barrels: low Meter:	No No
Depth to bottom Casing stickup n Depth to top of san Field Data	neasured abov	e top of aug		r (or ground surfa ound surface) (+ i:		0. in. 5. in. 4. in.	180 5 Calcula		Depth of w	ell bottom	below 1	top of c	asing (in):	185						Test Type:	Falling Head
Date	Time	Data from Meter	er	Depth to WL in Boring (measured from top of	Water Temp (deg F)	Refilled?	∆t (min)	Total Elapsed Time	Depth to WL in well (in.)	h, Height of Water in	∆h (in.)	Avg. h	Vol Cl	hange ((in.^3)	Flow (in^3/ min)	q, Flow (in^3/ hr)	Average Infiltration Surface Area,	V (Fig 9)	K20, Coef. Of Perme- ability at	Infiltration Rate [flow/surf area] (in./hr)
Start Date 3/16/2023	Start time: 15:20	(gallons) Gallons	Interval Pulse Count	casing)	(3.7)	Comments)		(min)		Well (in.)			from supply	from ∆h	Total		((in^2)		20 deg C (in./hr)	(FS=1)
3/16/23	15:23			10.75				3	124.0	56.0											
3/16/23	15:28			10.87			5	8	125.4	54.6	-1.44	55	0	25	25	5	299	1440	0.9	0.04	0.19
3/16/23 3/16/23	15:33 15:38			10.94 10.99			5 5	13 18	126.3 126.9	53.7 53.1	-0.84 -0.6	54 53	0	15 10	15 10	3	174 125	1411 1393	0.9	0.02	0.11 0.08
3/16/23	15:38			11.05			5	23	126.9	52.4	-0.6	53	0	10	10	2	125	1393	0.9	0.02	0.08
3/16/23	15:48			11.09			5	28	128.1	51.9	-0.48	52	0	8	8	2	100	1361	0.9	0.01	0.07
3/16/23	15:53			11.14			5	33	128.7	51.3	-0.6	52	0	10	10	2	125	1348	0.9	0.02	0.09
3/16/23	16:03			11.22			10	43	129.6	50.4	-0.96	51	0	17	17	2	100	1328	0.9	0.01	0.07
3/16/23	16:13			11.29			10	53	130.5	49.5	-0.84	50	0	15	15	1	87	1305	0.9	0.01	0.06
3/16/23 3/16/23	16:23			11.39			10 10	63 73	131.7 132.6	48.3	-1.2 -0.96	49	0	21 17	21 17	2	125	1280 1253	0.9	0.02	0.09
3/16/23	16:33 16:43			11.47 11.54			10	83	132.6	47.4 46.5	-0.96	48 47	0	17	17	2 1	100 87	1253	0.9	0.01	0.07
3/16/23	16:53			11.61			10	93	134.3	45.7	-0.84	46	0	15	15	1	87	1200	0.9	0.01	0.07
3/16/23	17:03			11.68			10	103	135.2	44.8	-0.84	45	0	15	15	1	87	1188	0.9	0.01	0.07
3/16/23	17:13			11.75			10	113	136.0	44.0	-0.84	44	0	15	15	1	87	1167	0.9	0.01	0.07
3/16/23	17:23			11.81			10	123	136.7	43.3	-0.72	44	0	12	12	1	75	1147	0.9	0.01	0.06
							-														-
				Conclude	d Test Po	or Infiltration															
							-														
							 														
																					1
				L			-														
							-							-							
							 														
							ŀ		1						1	1	1		1		
												<u> </u>			 						
														-							<u> </u>
		1												-							<u> </u>
														-							1
							L		L				L	L	L	L			L		
									<u> </u>				<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>		
									<u> </u>				<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>		ļ
																<u> </u>	<u> </u>		<u> </u>		
									<u> </u>				<u> </u>	-	<u> </u>	<u> </u>	<u> </u>	Minimu	I Im Rate		0.06
									1				Raw Rat	e for de	esian nria	or to app	lication of	adjustment			0.00

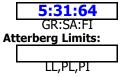
APPENDIX B

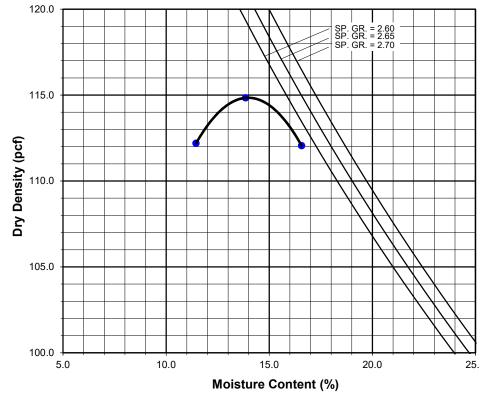
GEOTECHNICAL LABORATORY TEST RESULTS

MODIFIED PROCTOR COMPACTION TEST **ASTM D 1557**

Project Name: Project No.: Boring No.: Sample No.: Soil Identification:	CNUSD Transpo 13847.001 LB-1 B-1 Dark yellowish	- prown sandy l	ean clay s(C	Checked By: Depth (ft.):	0-5	Date: Date:	03/29/23 04/11/23
	Note: Corrected of 1.0% for ove			sumes specin			<u>sture content</u>
Preparation Method:	X Moist			action (%)	Rammer We	,	
Compaction Method	Dry X Mechanic Manual R		#3/4 #3/8 #4	5.2	Height of D Mold Volu	,	= 18.0 0.03320
TEST	NO.	1	2	3	4	5	6
Wt. Compacted S		3691	3777	3775			
Weight of Mold	(g)	1808	1808	1808			
Net Weight of So	il (g)	1883	1969	1967			
Wet Weight of Sc	oil + Cont. (g)	394.9	480.8	479.6			
Dry Weight of So	il + Cont. (g)	358.4	427.0	417.0			
Weight of Contain	ner (g)	39.6	38.7	39.2			
Moisture Content	(%)	11.45	13.86	16.57			
Wet Density	(pcf)	125.0	130.7	130.6			
Dry Density	(pcf)	112.2	114.8	112.0			
Maximum Dry		114.8		-	Moisture Cont		14.0
Corrected Dry	Density (pcf)	116.7		Corrected	Moisture Con	tent (%)	13.3

Corrected Dry Density (pcf) 110./


Y Procedure A Soil Passing No. 4 (4.75 mm) Sieve Mold: 4 in. (101.6 mm) diameter Layers : 5 (Five) Blows per layer: 25 (twenty-five) May be used if +#4 is 20% or less


Procedure B Soil Passing 3/8 in. (9.5 mm) Sieve Mold: 4 in. (101.6 mm) diameter Layers : 5 (Five) Blows per layer : 25 (twenty-five) Use if +#4 is >20% and +3/8 in. is 20% or less

Procedure C

Soil Passing 3/4 in. (19.0 mm) Sieve Mold: 6 in. (152.4 mm) diameter Layers : 5 (Five) Blows per layer : 56 (fifty-six) Use if +3/8 in. is >20% and +3/4 in. is <30%

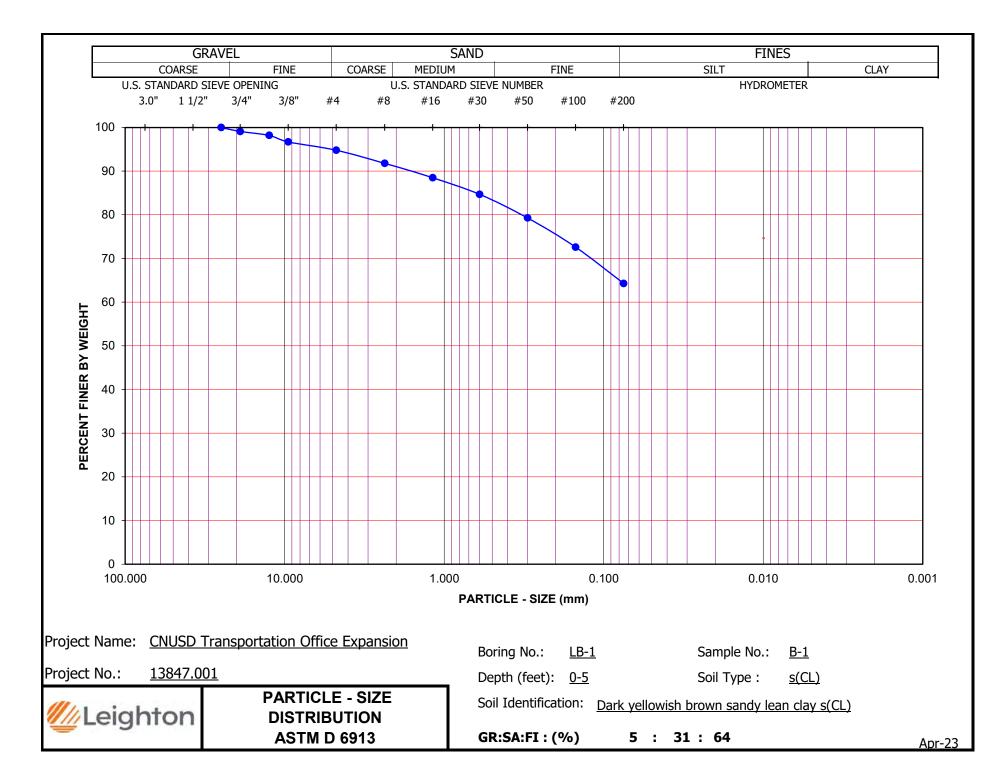
Particle-Size Distribution:

PARTICLE-SIZE DISTRIBUTION (GRADATION) of SOILS USING SIEVE ANALYSIS ASTM D 6913

Project Name:	CNUSD Transportation Office Expansion	Tested By:	O. Figueroa	Date:	03/25/23
Project No.:	<u>13847.001</u>	Checked By:	J. Ward	Date:	04/11/23
Boring No.:	<u>LB-1</u>	Depth (feet):	0-5		_
Sample No.:	<u>B-1</u>				
Coil Idontification (Dark vellewich brown andy lean day of	1.5			

Soil Identification: Dark yellowish brown sandy lean clay s(CL)

		Moisture Content of Total Air - D	ry Soil
Container No.:	R-201	Wt. of Air-Dry Soil + Cont. (g)	0.0
Wt. of Air-Dried Soil + Cont.(g)	1536.0	Wt. of Dry Soil + Cont. (g)	0.0
Wt. of Container (g)	218.4	Wt. of Container No (g)	1.0
Dry Wt. of Soil (g)	1317.6	Moisture Content (%)	0.0


	Container No.	R-201
After Wet Sieve	Wt. of Dry Soil + Container (g)	695.4
	Wt. of Container (g)	218.4
	Dry Wt. of Soil Retained on # 200 Sieve (g)	477.0

U. S. Siev	e Size	Cumulative Weight	Percent Passing (%)
(in.)	(mm.)	Dry Soil Retained (g)	
1 1/2"	37.5		
1"	25.0	0.0	100.0
3/4"	19.0	11.9	99.1
1/2"	12.5	23.8	98.2
3/8"	9.5	43.9	96.7
#4	4.75	68.2	94.8
#8	2.36	108.3	91.8
#16	1.18	151.7	88.5
#30	0.600	202.1	84.7
#50	0.300	273.0	79.3
#100	0.150	361.3	72.6
#200	0.075	470.9	64.3
PAN			

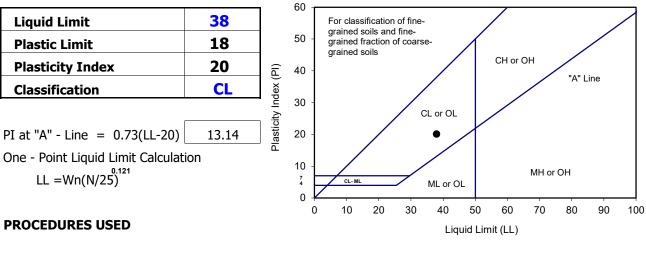
GRAVEL:	5 %
SAND:	31 %
FINES:	64 %
GROUP SYMBOL:	s(CL)

Cu = D60/D10 = ____

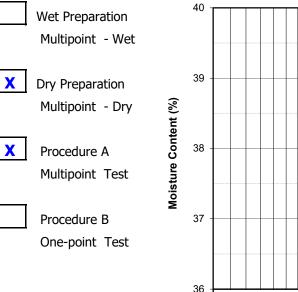
Cc = (D30)²/(D60*D10) =

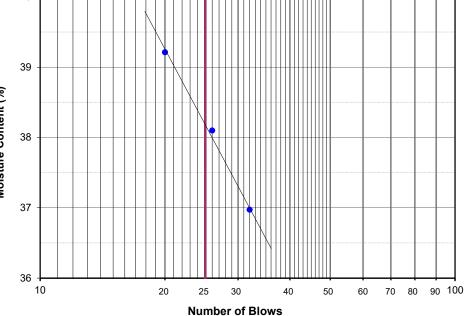
Boring No.	LB-1	LB-1	LB-2	IT-1	IT-2			
Sample No.	R-4	R-8	R-5	S-2	S-2			
Depth (ft.)	10.0	30.0	15.0	8.5	13.5			
Sample Type	Ring	Ring	Ring	SPT	SPT			
Soil Identification	Yellowish brown clayey gravel with sand (GC)s	Yellowish brown poorly- graded gravel with clay and sand (GP- GC)s	Brown clayey sand with gravel (SC)g	Yellowish brown lean clay with sand (CL)s	Brown clayey sand with gravel (SC)g			
Moisture Correction				1	Γ		1	
Wet Weight of Soil + Container (g)	0.0	0.0	0.0	0.0	0.0			
Dry Weight of Soil + Container (g)	0.0	0.0	0.0	0.0	0.0			
Weight of Container (g)	1.0	1.0	1.0	1.0	1.0			
Moisture Content (%)	0.0	0.0	0.0	0.0	0.0			
Sample Dry Weight Determinat	ion			1	1		T	
Weight of Sample + Container (g)	965.7	938.7	796.0	573.6	752.5			
Weight of Container (g)	108.0	82.5	108.6	111.0	106.2			
Weight of Dry Sample (g)	857.7	856.2	687.4	462.6	646.3			
Container No.:								
After Wash				1				
Method (A or B)	Α	Α	А	Α	Α			
Dry Weight of Sample + Cont. (g)	807.7	877.2	478.0	233.1	666.8			
Weight of Container (g)	108.0	82.5	108.6	111.0	106.2			
Dry Weight of Sample (g)	699.7	794.7	369.4	122.1	560.6			
% Passing No. 200 Sieve	18.4	7.2	46.3	73.6	13.3			
% Retained No. 200 Sieve	81.6	92.8	53.7	26.4	86.7			
Leighton		PERCENT No. 200 ASTM	SIEVE	ì	Project Name: Project No.: Tested By:	CNUSD Transp 13847.001 ACS/JD	ortation Office	Expansion 03/27/23

Boring No.	LB-1				
Sample No.	R-10				
Depth (ft.)	40.0				
Sample Type	Ring				
Soil Identification	Yellowish brown clayey sand (SC)				
No Moisture Correction; ASTM D	1140 modified	to include splitting the sam	ple on the #4 sieve		
Total Sample Dry Weight Determ	nination				
Dry Weight of Soil + Container (g)	1042.1				
Weight of Container (g)	294.3				
Dry Weight of Soil (g)	747.8				
Sample Dry Weight Determination	on, Retained on	Sieve #4			
Dry Weight of Sample + Cont. (g)	141.8				
Weight of Container (g)	75.9				
Weight of Dry Sample (g)	65.9				
Sample Dry Weight Determination	on, Passing Siev	e #4			
Dry Weight of Sample + Cont. (g)	543.4				
Weight of Container (g)	76.6				
Weight of Dry Sample (g)	466.8				
After Wash					
Method (A or B)	Α				
Dry Weight of Sample + Cont. (g)	360.9				
Weight of Container (g)	76.6				
Weight of Dry Sample (g)	284.3				
% Passing No. 4 Sieve	91.2				
% Retained No. 4 Sieve	8.8				
% Passing No. 200 Sieve	35.7				
Leighton		PERCENT PASSING No. 200 SIEVE ASTM D 1140	Project Na Project No Tested By:	 sportation Office Date:	e Expansion

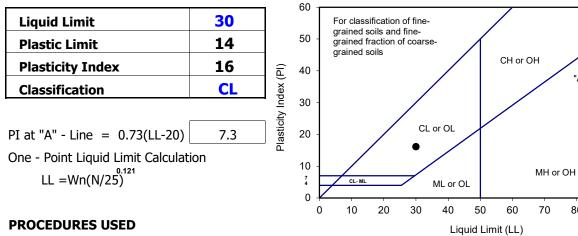


ATTERBERG LIMITS ASTM D 4318


Project Name:	CNUSD Transporation Office Expansion	Tested By:	J. Domingo	Date:	03/29/23
Project No. :	13847.001	Input By:	J. Ward	Date:	04/11/23
Boring No.:	IT-1	Checked By:	J. Ward		
Sample No.:	S-2	Depth (ft.)	8.5		
Coil Idoptification	Vallowich brown loop clay with cond (C				


Soil Identification: Yellowish brown lean clay with sand (CL)s

TEST	PLAST	TIC LIMIT	IMIT LIQUID LIMIT			
NO.	1	2	1	2	3	4
Number of Blows [N]			32	26	20	
Wet Wt. of Soil + Cont. (g)	10.11	10.10	22.46	22.16	22.55	
Dry Wt. of Soil + Cont. (g)	8.74	8.73	16.67	16.35	16.48	
Wt. of Container (g)	1.10	1.05	1.01	1.10	1.00	
Moisture Content (%) [Wn]	17.93	17.84	36.97	38.10	39.21	



ATTERBERG LIMITS ASTM D 4318

Project Name:	CNUSD Transporation Office Expansion	Tested By:	J. Domingo	Date:	03/28/23
Project No. :	13847.001	Input By:	J. Ward	Date:	04/11/23
Boring No.:	LB-1	Checked By:	J. Ward		
Sample No.:	R-4	Depth (ft.)	10.0		
Soil Identification	Yellowish brown clayey gravel with san	d (GC)s			

Soll Identification: reliowish brown clayey gravel with sand (GC)s


TEST	PLASTIC LIMIT		IT LIQUID LIMIT			
NO.	1	2	1	2	3	4
Number of Blows [N]			30	23	15	
Wet Wt. of Soil + Cont. (g)	10.32	10.38	21.31	21.58	21.27	
Dry Wt. of Soil + Cont. (g)	9.18	9.26	16.82	16.84	16.28	
Wt. of Container (g)	1.00	1.13	1.08	1.04	1.11	
Moisture Content (%) [Wn]	13.94	13.78	28.53	30.00	32.89	

X

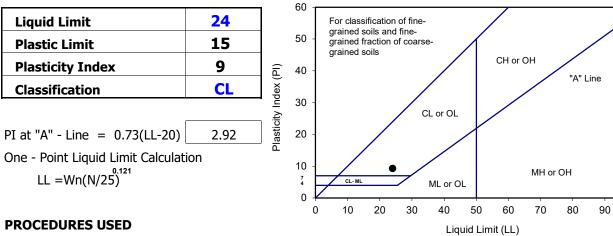
X

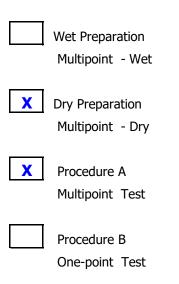
"A" Line

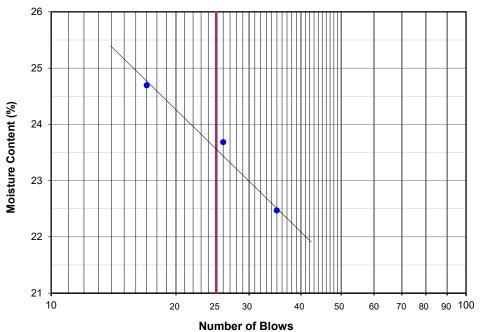
80

90

100




ATTERBERG LIMITS ASTM D 4318


Project Name:	CNUSD Transporation Office Expansio	n Tested By:	J. Domingo	Date:	03/29/23
Project No. :	13847.001	Input By:	J. Ward	Date:	04/11/23
Boring No.:	LB-1	Checked By:	J. Ward		
Sample No.:	R-10	Depth (ft.)	40.0		
Soil Identification:	Vellowish brown clavey sand (SC)				

Soli Identification: Yellowish brown clayey sand (SC)

TEST	PLASTIC LIMIT		PLASTIC LIMIT LIQUID LIMIT			
NO.	1	2	1	2	3	4
Number of Blows [N]			35	26	17	
Wet Wt. of Soil + Cont. (g)	9.11	9.18	22.11	22.21	22.53	
Dry Wt. of Soil + Cont. (g)	8.08	8.13	18.25	18.16	18.28	
Wt. of Container (g)	1.09	1.01	1.07	1.06	1.07	
Moisture Content (%) [Wn]	14.74	14.75	22.47	23.68	24.69	

100

Г

EXPANSION INDEX of SOILS ASTM D 4829

Project Name:	CNUSD Transportation Office Expansion	Tested By:	G. Berdy	Date:	03/30/23	
Project No.:	13847.001	Checked By:	J. Ward	Date:	04/11/23	
Boring No.:	LB-1	Depth (ft.):	0-5		_	
Sample No.:	B-1					
Soil Identification:	Dark yellowish brown sandy lean clay s(CL)					

Dry Wt. of Soil + Cont. (g)	1000.00
Wt. of Container No. (g)	0.00
Dry Wt. of Soil (g)	1000.00
Weight Soil Retained on #4 Siev	e 0.00
Percent Passing # 4	100.00

MOLDED SPECI	MEN	Before Test	After Test
Specimen Diameter	(in.)	4.01	4.01
Specimen Height	(in.)	1.0000	1.0340
Wt. Comp. Soil + Mold	(g)	596.30	433.20
Wt. of Mold	(g)	208.10	0.00
Specific Gravity (Assume	ed)	2.70	2.70
Container No.		0	0
Wet Wt. of Soil + Cont.	(g)	778.10	641.30
Dry Wt. of Soil + Cont.	(g)	701.00	557.80
Wt. of Container	(g)	0.00	208.10
Moisture Content	(%)	11.00	23.88
Wet Density	(pcf)	117.1	126.4
Dry Density	(pcf)	105.5	102.0
Void Ratio		0.598	0.653
Total Porosity		0.374	0.395
Pore Volume	(cc)	77.5	84.5
Degree of Saturation (%) [S meas]	49.7	98.8

SPECIMEN INUNDATION in distilled water for the period of 24 h or expansion rate < 0.0002 in./h

Date	Time	Pressure (psi)	Elapsed Time (min.)	Dial Readings (in.)		
03/30/23	11:32	1.0	0	0.5030		
03/30/23	11:42	1.0	10	0.5015		
	Add Distilled Water to the Specimen					
03/30/23	12:17	1.0	35	0.5275		
03/31/23	6:20	1.0	1118	0.5370		
03/31/23	9:00	1.0	1278	0.5370		

Expansion Index (EI meas) =	((Final Rdg - Initial Rdg) / Initial Thick.) x 1000	36
-----------------------------	---	----

1

Initial Dial Reading:

Diameter(in):

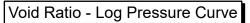
ONE-DIMENSIONAL SWELL OR SETTLEMENT POTENTIAL OF COHESIVE SOILS ASTM D 4546

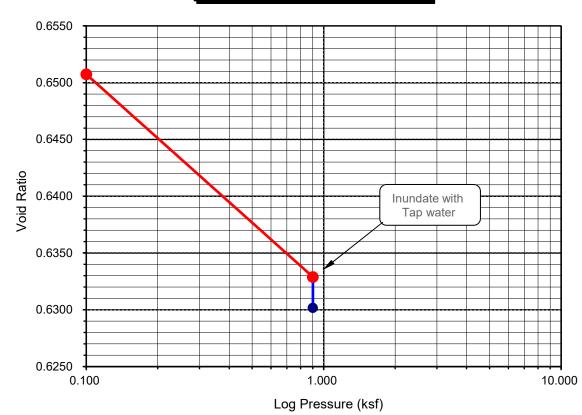
Specific Gravity(assumed):

Initial Saturation (%)

2.70

83.5


Project Name:	CNUSD Trans	portation Office Ex	pansion	Tested By:	G. Bathala	Date:	03/29/23
Project No.:	13847.001			Checked By:	J. Ward	Date:	04/11/23
Boring No.:	LB-2			Sample Type:	Ring		
Sample No.:	R-3			Depth (ft.)	7.5		
Sample Descript	ion: Brown I	ean clay (CL)					
·							
Initial Dry Dens	sity (pcf):	102.0		Final Dry Den	sity (pcf):		103.8
Initial Moisture	(%):	20.19		Final Moisture	e (%) :		21.9
Initial Length (in	n.):	1.0000		Initial Void rat	io:		0.6529


			-			
Pressure (p) (ksf)	Final Reading (in)	Apparent Thickness (in)	Load Compliance (%)	Swell (+) Settlement (-) % of Sample Thickness	Void Ratio	Corrected Deformation (%)
0.100	0.1364	0.9987	0.00	-0.13	0.6507	-0.13
0.900	0.1490	0.9861	0.18	-1.39	0.6329	-1.21
H2O	0.1507	0.9845	0.18	-1.56	0.6302	-1.38

Percent Swell (+) / Settlement (-) After Inundation = -0.17

0.1351

2.415

TESTS for SULFATE CONTENT CHLORIDE CONTENT and pH of SOILS

Project Name:	CNUSD Transportation Office Expansion	Tested By :	G. Berdy	Date:	03/28/23
Project No. :	13847.001	Checked By:	J. Ward	Date:	04/11/23

Boring No.	LB-1	
Sample No.	B-1	
Sample Depth (ft)	0-5	
Soil Identification:	Dark yellowish brown s(CL)	
Wet Weight of Soil + Container (g)	0.00	
Dry Weight of Soil + Container (g)	0.00	
Weight of Container (g)	1.00	
Moisture Content (%)	0.00	
Weight of Soaked Soil (g)	100.49	

SULFATE CONTENT, DOT California Test 417, Part II

PPM of Sulfate, Dry Weight Basis	86	
PPM of Sulfate (A) x 41150	86.41	
Wt. of Residue (g) (A)	0.0021	
Wt. of Crucible (g)	22.7069	
Wt. of Crucible + Residue (g)	22.7090	
Duration of Combustion (min)	45	
Time In / Time Out	8:00/8:45	
Furnace Temperature (°C)	860	
Crucible No.	7	
Beaker No.	4	

CHLORIDE CONTENT, DOT California Test 422

ml of Extract For Titration (B)	15	
ml of AgNO3 Soln. Used in Titration (C)	1.4	
PPM of Chloride (C -0.2) * 100 * 30 / B	240	
PPM of Chloride, Dry Wt. Basis	240	

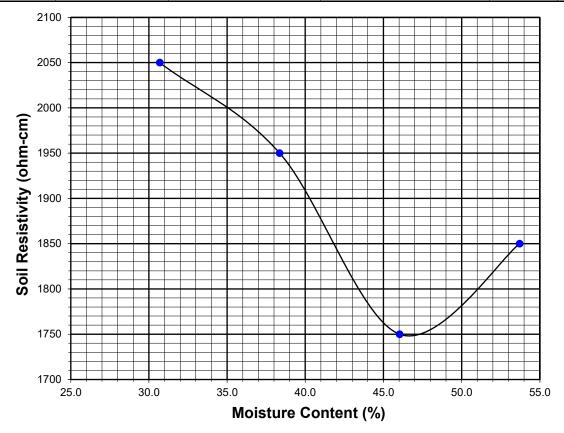
pH TEST, DOT California Test 643

pH Value	6.69		
Temperature °C	19.6		

SOIL RESISTIVITY TEST DOT CA TEST 643

Project Name:	CNUSD Transportation Office Expansion	Tested By :	G. Berdy	Date: 03/30/23
Project No. :	13847.001	Checked By:	J. Ward	Date: 04/11/23
Boring No.:	LB-1	Depth (ft.) :	0-5	

Sample No. : B-1


Soil Identification:* Dark yellowish brown s(CL)

*California Test 643 requires soil specimens to consist only of portions of samples passing through the No. 8 US Standard Sieve before resistivity testing. Therefore, this test method may not be representative for coarser materials.

Specimen No.	Water Added (ml) (Wa)	Adjusted Moisture Content (MC)	Resistance Reading (ohm)	Soil Resistivity (ohm-cm)
1	40	30.69	2050	2050
2	50	38.36	1950	1950
3	60	46.03	1750	1750
4	70	53.71	1850	1850
5				

Moisture Content (%) (MCi)	0.00		
Wet Wt. of Soil + Cont. (g)	0.00		
Dry Wt. of Soil + Cont. (g)	0.00		
Wt. of Container (g)	1.00		
Container No.			
Initial Soil Wt. (g) (Wt)	130.34		
Box Constant	1.000		
MC =(((1+Mci/100)x(Wa/Wt+1))-1)x100			

1750	46.6	86	240	6.69	19.6			
DOT CA	Test 643	DOT CA Test 417 Part II	DOT CA Test 422	DOT CA Test 643				
(ohm-cm)	(%)	(ppm)	(ppm)	pН	Temp. (°C)			
Min. Resistivity	Moisture Content	Sulfate Content	Chloride Content	Soil pH				

APPENDIX C

SUMMARY OF SEISMIC ANALYSIS

Determination of Site Class and Estimation of Shear Wave Velocity

Project: 13847.001 Transportation Office Expansion

	di,	Field Blov	v Counts, Ni		Average	Ni	di / Ni
Depth	Layer	Corrected	for Cs and sampler type		Ni	Hammer	
(ft)	Thick (ft)	Blows per	r foot (bpf)		(bpf)	Corr:	
	i i	LB-1	LB-2			1.3	
5	7.5	7	3		5	7	1.15
10	5	19	19		19	25	0.20
15	5	15	11		13	17	0.30
20	5	35	43		39	51	0.10
25	5	38	46		42	55	0.09
30	5	60			60	78	0.06
35	5	48			48	62	0.08
40	5	23			23	30	0.17
45	5	41			41	53	0.09
50	7.5	60			60	78	0.10
60	10	60	*Assumed based on blowcount at 50'		60	78	0.13
70	10	60			60	78	0.13
80	10	60			60	78	0.13
90	10	60			60	78	0.13
100	5	60			60	78	0.06
Summatior	100						2.92
				Navg = Sur	n(di) / Sum	(di / Ni) =	34

Extract of ASCE 7-16 Table 20.3-1 Site Classification (2019 CBC 1613A.2.2):

Site Class	Soil Profile	Avg. N upper 100'		Vs30 (ft/s	sec)	Vs30 (m/s)		Site Avg	Interpolated
	Name	from	to	from	to	from	to	N	vs30 (ft/s)
А	Hard Rock	-		5000	10000	1524	3048		
В	Rock	-		2500	5000	762	1524		
С	VD soil & soft rock	50.001	100	1200	2500	366	762		
D	Stiff Soil	15	50	600	1200	183	366	34	930
E	Soft Soil	0	14.999	0	600	0	183		
F		-	-			0	0		

SITE CLASS, Table 20.3-1: D

Estimation of Average Shear Wave Velocity in upper 100 ft (Vs30):

	<u>ft/s</u>	<u>m/s</u>
Approx. Vs30 (interpolation of Table 20.3-1) =	930	283
Approx. Vs30 sands (Imai and Tonouchi, 1982) =	1061	324
Approx. Vs30 sands (Sykora and Stokoe, 1983) =	909	277
Approx. Vs30 (Maheswari, Boominathan, Dodagoudar, 2009) =	872	266

CNUSD Transportation Office Expansion

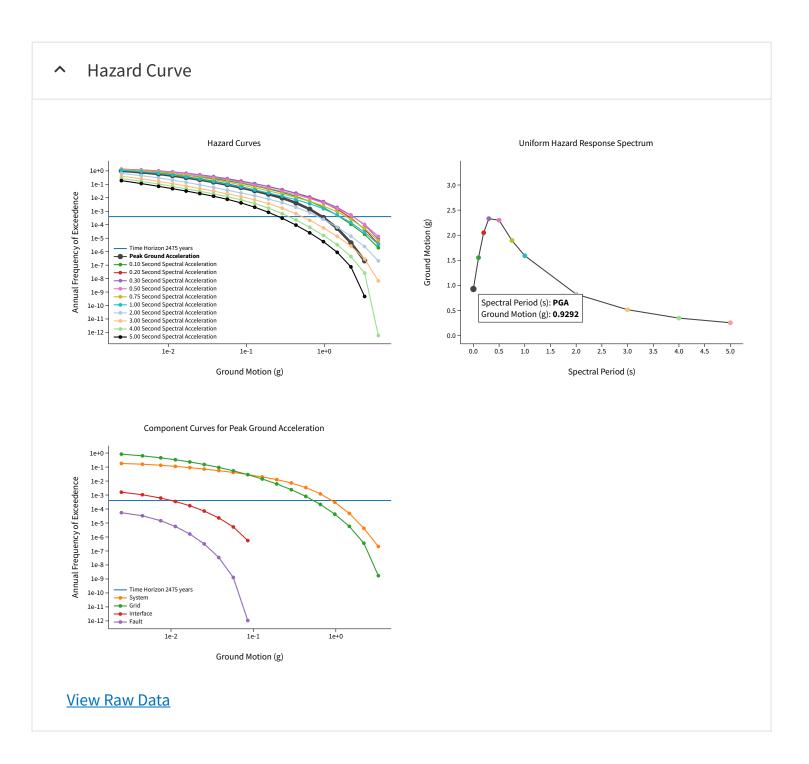
Latitude, Longitude: 33.8793, -117.5777

Latituu	ie, Longitude. 55.679	5, -117.5777	
	па деі кеу		4-
Apar	tments	Citrus Circle	91
- •		Apartment Homes	Tao Massage
	McDonald's		
		Cardenas Market	Springs Charter Schools 🗣
	Ave	Orange Grove	
	L L	High School 💙 😤	+
	S Lincoln Ave	Cardenas Market Orange Grove High School	orona City Hall
	SL	Bue	
WSS		S	Vited States Postal Service
Goo	gie p		Map data ©2023
Date		3/22/202	23, 4:54:06 PM
	Code Reference Document	ASCE7-	16
Risk Cat		II 	
Site Clas	S	D - Stiff	Soil
Туре	Value	Description	
SS	2.071	MCE _R ground motion. (for 0.2 second period	d)
S ₁	0.778	MCE _R ground motion. (for 1.0s period)	
S _{MS}	2.071		
S _{M1}	null -See Section 11.4.8	Site-modified spectral acceleration value	
S _{DS}	1.381	Numeric seismic design value at 0.2 second	1 SA
S _{D1}	null -See Section 11.4.8	Numeric seismic design value at 1.0 second	1 SA
Туре	Value	Description	
SDC	null -See Section 11.4.8	Seismic design category	
Fa	1	Site amplification factor at 0.2 second	
Fv	null -See Section 11.4.8	Site amplification factor at 1.0 second	
PGA	0.869	MCE _G peak ground acceleration	
F _{PGA}	1.1	Site amplification factor at PGA	
PGA _M	0.956	Site modified peak ground acceleration	
ΤL	8	Long-period transition period in seconds	
SsRT	2.201	Probabilistic risk-targeted ground motion. (0.2 second)	
SsUH	2.406	Factored uniform-hazard (2% probability of exceedance in 50	years) spectral acceleration
SsD	2.071	Factored deterministic acceleration value. (0.2 second)	
S1RT	0.778	Probabilistic risk-targeted ground motion. (1.0 second)	
S1UH	0.859	Factored uniform-hazard (2% probability of exceedance in 50 y	years) spectral acceleration.
S1D	0.812	Factored deterministic acceleration value. (1.0 second)	
PGAd	0.869	Factored deterministic acceleration value. (Peak Ground Accel	
PGA _{UH}	0.924	Uniform-hazard (2% probability of exceedance in 50 years) Pe	eak Ground Acceleration
C _{RS}	0.915	Mapped value of the risk coefficient at short periods	

Туре	Value	Description
C _{R1}	0.906	Mapped value of the risk coefficient at a period of 1 s
CV	1.5	Vertical coefficient

DISCLAIMER

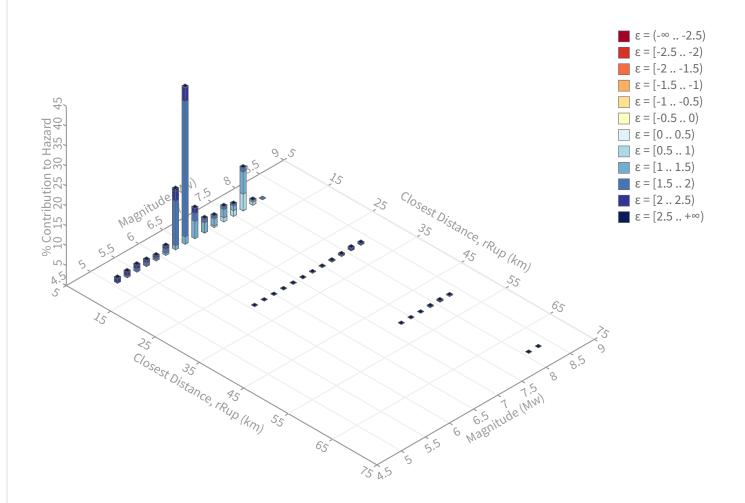
While the information presented on this website is believed to be correct, <u>SEAOC /OSHPD</u> and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in this web application should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. SEAOC / OSHPD do not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the seismic data provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the search results of this website.


U.S. Geological Survey - Earthquake Hazards Program

Unified Hazard Tool

Please do not use this tool to obtain ground motion parameter values for the design code reference documents covered by the <u>U.S. Seismic Design Maps web tools</u> (e.g., the International Building Code and the ASCE 7 or 41 Standard). The values returned by the two applications are not identical.

Please also see the new <u>NSHM Hazard Tool</u> for access to the most recent NSHMs for the conterminous U.S. and Hawaii.


 Input 	
Edition Dynamic: Conterminous U.S. 2014 (u	Spectral Period Peak Ground Acceleration
Latitude Decimal degrees	Time Horizon Return period in years
33.8793	2475
Longitude Decimal degrees, negative values for western longitudes -117.5777	
Site Class 259 m/s (Site class D)	

Deaggregation

Component

Total

Summary statistics for, Deaggregation: Total

Deaggregation targets	Recovered targets
Return period: 2475 yrs	Return period: 2982.2883 yrs
Exceedance rate: 0.0004040404 yr ⁻¹	Exceedance rate: 0.00033531299 yr ⁻¹
PGA ground motion: 0.92918767 g	
Totals	Mean (over all sources)
Binned: 100 %	m: 6.67
Residual: 0%	r: 6.82 km
Trace: 0.06 %	ε ₀ : 1.66 σ
Mode (largest m-r bin)	Mode (largest m-r- ϵ_0 bin)
m: 6.47	m: 6.47
r: 5.85 km	r: 5.82 km
ε.: 1.74 σ	ε.: 1.71 σ
Contribution: 39.36 %	Contribution: 33.89 %
Discretization	Epsilon keys
r: min = 0.0, max = 1000.0, Δ = 20.0 km	ε0: [-∞2.5)
m: min = 4.4, max = 9.4, Δ = 0.2	ε1: [-2.52.0)
ε: min = -3.0, max = 3.0, Δ = 0.5 σ	ε2: [-2.01.5)
	ε3: [-1.51.0)
	ε4: [-1.00.5)
	ε5: [-0.50.0)
	ε6: [0.00.5]
	ε7: [0.5 1.0)
	ɛ8: [1.0 1.5)
	£9: [1.5 2.0)
	ε10: [2.02.5)

ε11: [2.5 .. +∞]

Deaggregation Contributors

ystem	5.87 5.12 4.13	6.46 7.31 6.73	1.76 1.15	117.590°W 117.606°W	33.829°N	191.46	45.33
	5.12	7.31	1.15		33.829°N	191.46	
				117.606°W			23.46
	4.13	6.73			33.841°N	211.83	11.03
			1.47	117.610°W	33.855°N	227.99	6.57
ystem							43.28
	5.87	6.45	1.76	117.590°W	33.829°N	191.46	24.0
	5.23	7.49	1.13	117.606°W	33.841°N	211.26	9.4
	3.98	6.91	1.39	117.609°W	33.858°N	230.47	5.60
Grid							5.7
	6.06	5.72	1.76	117.578°W	33.911°N	0.00	1.6
	6.06	5.72	1.76	117.578°W	33.911°N	0.00	1.69
Grid							5.62
	6.16	5.66	1.79	117.578°W	33.911°N	0.00	1.5
	6.16	5.66	1.79	117.578°W	33.911°N	0.00	1.59
		Grid 6.06 6.06 Grid 6.16	Grid 6.06 5.72 6.06 5.72 Grid 6.16 5.66	Grid 6.06 5.72 1.76 6.06 5.72 1.76 Grid 6.16 5.66 1.79	Grid 6.06 5.72 1.76 117.578°W 6.06 5.72 1.76 117.578°W Grid 6.16 5.66 1.79 117.578°W	Grid 6.06 5.72 1.76 117.578°W 33.911°N 6.06 5.72 1.76 117.578°W 33.911°N Grid 6.16 5.66 1.79 117.578°W 33.911°N	Grid 6.06 5.72 1.76 117.578°W 33.911°N 0.00 6.06 5.72 1.76 117.578°W 33.911°N 0.00 Grid 6.16 5.66 1.79 117.578°W 33.911°N 0.00

Liquefaction Susceptibility Analysis: SPT Method

Youd and Idriss (2001), Martin and Lew (1999)

Description: CNUSD Transportation Office Expansion; Case 1; PGAm 0.956; design GW 115; No overex 0

Project No.: 13847.001

Mar 2023

General Boring Information:

	Existing	Design	Design	Overex.	Ground	design	Boring I	ocation	General Parameters:
Boring	GW	GW	Fill Height	depth bgs	Surface	gw	Coord	linates	a _{max} = 0.96g
No.	Depth (ft)	Depth (ft)	(ft)	(ft)	Elev (ft)	elve	X (ft)	Y (ft)	M _W = 6.5
LB-1	115	115		0	647	532	-6.297	32.394	MSF eq: 1
LB-2	115	115		0	645	530	-23.65	61.616	MSF = 1.44
						0			Hammer Efficiency = 84
						0			C _E = 1.40
						0			C _B = 1
						0			C _s for SPT? TRUE
						0			Unlined, but room for liner
						0			Rod Stickup (feet) = 3
						0			Ring sample correction = 0.65
						0			
						0			
						0			
						0			
						0			
						0			
						0			
						0			

Summary of Liquefaction Susceptibility Analysis: SPT Method

Liquefaction Method: Youd and Idriss (2001). Seismic Settlement Method: Tokimatsu and Seed (1987) and Martin and Lew (1999).

Project: CNUSD Transportation Office Expansion; Case 1; PGAm 0.956; design GW 115; No overex 0

Project No.: 13847.001

Boring No.	Approx. Layer Depth (ft)	SPT Depth (ft)	Approx Layer Thick- ness (ft)	Plasticity ("n"=non susc. to liq.)	Estimated Fines Cont (%)	11	N _m or B	Sampler Type (enter 2 if mod CA Ring) ft)	Cs	N _m (corrected for Cs and ring->SPT) (blows/ft)	10	(N ₁) ₆₀	(N ₁) _{60CS}	CRR _{7.5}	Design σ _{vo} ' (psf)	CSR _{7.5}	CSR_M	Liquefaction Factor of Safety	(N ₁) _{60CS} (for Settle- ment) (blows/ft)	Dry Sand Strain (%) (Tok/ Seed 87) (%)	Sat Sand Strain (%) (Tok/ Seed 87) (%)	Seismic Sett. of Layer (in.)	Cummulative Seismic Settlement (in.)
LB-1	0 to 3.8	2.5	3.8		65	120	5	2	1	3.3	300	5.8	42.0	0.131	300	0.62	0.43	NonLig	12.0	1.61		0.72	2.1
LB-1 LB-1	3.8 to 6.3	2.5 5	2.5		85	120	12	2	1	3.3 7.8	600	13.9	<u>12.0</u> 21.7	0.131	600	0.62	0.43	NonLiq	21.7	0.84		0.72	1.3
LB-1	6.3 to 8.8	7.5	2.5		65	120	19	2	1	12.4	900	21.1	30.3	>Range	900	0.61	0.43	NonLiq	30.3	0.04		0.23	1.5
LB-1	8.8 to 12.5	10	3.8		<u>18</u>	120	23	2	1	12.4	1200	23.5	28.3	0.379	1200	0.61	0.42	NonLiq	28.3	0.27		0.35	1.0
LB-1	12.5 to 17.5	15	5.0		55	120	15	1	1.24	18.6	1800	23.8	33.5	>Range	1800	0.60	0.42	NonLia	33.5	0.29		0.33	0.6
LB-1	17.5 to 22.5	20	5.0		30	120	59	2	1	38.4	2400	47.6	59.6	>Range		0.59	0.41	NonLia	59.6	0.07		0.04	0.5
LB-1	22.5 to 27.5	25	5.0		30	120	38	1	1.3	49.4	3000	54.8	68.0	>Range		0.59	0.41	NonLiq	68.0	0.10		0.06	0.4
LB-1	27.5 to 32.5	30	5.0		<u>7</u>	120	100	2	1	65.0	3600	69.3		>Range		0.58	0.40	NonLig	70.0	0.04		0.03	0.4
LB-1	32.5 to 37.5	35	5.0		10	120	48	1	1.3	62.4	4200	61.6		>Range		0.55	0.38	NonLig	63.8	0.05		0.03	0.3
LB-1	37.5 to 42.5	40	5.0		36	120	38	2	1	24.7	4800	22.8		>Range		0.53	0.37	NonLig	32.4	0.41		0.25	0.3
LB-1	42.5 to 47.5	45	5.0		90	120	41	1	1.3	53.3	5400	46.4	60.7	>Range		0.50	0.35	NonLig	60.7	0.06		0.04	0.1
LB-1	47.5 to 52.0	50	4.5		25	120	100	2	1	65.0	6000	53.7	64.1	>Range		0.48	0.33	NonLiq	64.1	0.06		0.03	0.0
LB-2	0 to 3.8	2.5	3.8		85	120	7	2	1	4.6	300	8.1	<u>14.7</u>	0.158	300	0.62	0.43	NonLiq	14.7	1.41		0.64	2.1
LB-2	3.8 to 6.3	5	2.5		85	120	5	2	1	3.3	600	5.8	<u>12.0</u>	0.131	600	0.61	0.43	NonLiq	12.0	1.95		0.59	1.4
LB-2	6.3 to 8.8	7.5	2.5		90	120	10	2	1	6.5	900	11.1	18.3	0.195	900	0.61	0.42	NonLiq	18.3	1.09		0.33	0.9
LB-2	8.8 to 12.5	10	3.8		80	120	31	2	1	20.2	1200	31.6	43.0	>Range	1200	0.61	0.42	NonLiq	43.0	0.10		0.04	0.5
LB-2	12.5 to 17.5	15	5.0		<u>46</u>	120	19	2	1	12.4	1800	15.8	24.0	0.273	1800	0.60	0.42	NonLiq	24.0	0.68		0.41	0.5
LB-2	17.5 to 22.5	20	5.0		25	120	43	1	1.3	55.9	2400	69.3	81.6	>Range	2400	0.59	0.41	NonLiq	81.6	0.05		0.03	0.1
LB-2	22.5 to 27.0	25	4.5		25	120	77	2	1	50.1	3000	55.5	66.2	>Range	3000	0.59	0.41	NonLiq	66.2	0.10		0.05	0.1

Liquefaction Susceptibility Analysis: SPT Method

Youd and Idriss (2001), Martin and Lew (1999)

Description: CNUSD Transportation Office Expansion; Case 3; PGAm 0.956; design GW 115; Overex./scarify 5

Project No.: 13847.001

Mar 2023

General Boring Information:

	Existing	Design	Design	Overex.	Ground	design	Boring I	ocation	General Parameters:
Boring	GW	GW	Fill Height	depth bgs	Surface	gw	Coord	linates	a _{max} = 0.96g
No.	Depth (ft)	Depth (ft)	(ft)	(ft)	Elev (ft)	elve	X (ft)	Y (ft)	M _W = 6.5
LB-1	115	115		5	647	532	-6.297	32.394	MSF eq: 1
LB-2	115	115		5	645	530	-23.65	61.616	MSF = 1.44
						0			Hammer Efficiency = 84
						0			C _E = 1.40
						0			C _B = 1
						0			C _S for SPT? TRUE
						0			Unlined, but room for liner
						0			Rod Stickup (feet) = 3
						0			Ring sample correction = 0.65
						0			
						0			
						0			
						0			
						0			
						0			
						0			
						0			

Summary of Liquefaction Susceptibility Analysis: SPT Method

Liquefaction Method: Youd and Idriss (2001). Seismic Settlement Method: Tokimatsu and Seed (1987) and Martin and Lew (1999).

Project: CNUSD Transportation Office Expansion; Case 3; PGAm 0.956; design GW 115; Overex./scarify 5

Project No.: 13847.001

Boring No.	Approx. Layer Depth (ft)	SPT Depth (ft)	Approx Layer Thick- ness (ft)	Plasticity ("n"=non susc. to liq.)	Estimated Fines Cont (%)	γ _t (pcf)		Sampler Type (enter 2 if mod CA Ring) ft)	Cs	N _m (corrected for Cs and ring->SPT) (blows/ft)		(N ₁) ₆₀	(N ₁) _{60CS}	CRR _{7.5}	Design σ _{vo} ' (psf)	CSR _{7.5}	CSR_M	Liquefaction Factor of Safety	(N ₁) _{60CS} (for Settle- ment) (blows/ft)	Dry Sand Strain (%) (Tok/ Seed 87) (%)	Sat Sand Strain (%) (Tok/ Seed 87) (%)	Seismic Sett. of Layer (in.)	Cummulative Seismic Settlement (in.)
LB-1	0 to 3.8	2.5	3.8	ОХ	65	120	50	1	1.3	65.0	300	116.0	144.2	>Range	300	0.62	0.43	NonLig	144.2	0.00		0.00	1.2
LB-1	3.8 to 5.0	5	1.3	ox	85	120	50	1	1.3	65.0	600	116.0	144.2	>Range	600	0.61	0.43	NonLiq	144.2	0.00		0.00	1.2
LB-1	5.0 to 6.3	5	1.3	U.Y.	85	120	12	2	1	7.8	600	13.9	21.7	0.238	600	0.61	0.43	NonLig	21.7	0.84		0.13	1.2
LB-1	6.3 to 8.8	7.5	2.5		65	120	19	2	1	12.4	900	21.1	30.3	>Range	900	0.61	0.42	NonLig	30.3	0.27		0.08	1.1
LB-1	8.8 to 12.5	10	3.8		18	120	23	2	1	15.0	1200	23.5	28.3	0.379	1200	0.61	0.42	NonLiq	28.3	0.78		0.35	1.0
LB-1	12.5 to 17.5	15	5.0		55	120	15	1	1.24	18.6	1800	23.8	33.5	>Range	1800	0.60	0.42	NonLiq	33.5	0.29		0.17	0.6
LB-1	17.5 to 22.5	20	5.0		30	120	59	2	1	38.4	2400	47.6	59.6	>Range	2400	0.59	0.41	NonLiq	59.6	0.07		0.04	0.5
LB-1	22.5 to 27.5	25	5.0		30	120	38	1	1.3	49.4	3000	54.8	68.0	>Range	3000	0.59	0.41	NonLiq	68.0	0.10		0.06	0.4
LB-1	27.5 to 32.5	30	5.0		<u>7</u>	120	100	2	1	65.0	3600	69.3	70.0	>Range	3600	0.58	0.40	NonLiq	70.0	0.04		0.03	0.4
LB-1	32.5 to 37.5	35	5.0		10	120	48	1	1.3	62.4	4200	61.6	63.8	>Range	4200	0.55	0.38	NonLiq	63.8	0.05		0.03	0.3
LB-1	37.5 to 42.5	40	5.0		<u>36</u>	120	38	2	1	24.7	4800	22.8	32.4	>Range	4800	0.53	0.37	NonLiq	32.4	0.41		0.25	0.3
LB-1	42.5 to 47.5	45	5.0		90	120	41	1	1.3	53.3	5400	46.4	60.7	>Range	5400	0.50	0.35	NonLiq	60.7	0.06		0.04	0.1
LB-1	47.5 to 52.0	50	4.5		25	120	100	2	1	65.0	6000	53.7	64.1	>Range	6000	0.48	0.33	NonLiq	64.1	0.06		0.03	0.0
LB-2	0 to 3.8	2.5	3.8	ох	85	120	50	1	1.3	65.0	300	116.0	144.2	>Range	300	0.62	0.43	NonLig	144.2	0.00		0.00	1.2
LB-2	3.8 to 5.0	5	1.3	ОХ	85	120	50	1	1.3	65.0	600	116.0	144.2	>Range	600	0.61	0.43	NonLig	144.2	0.00		0.00	1.2
LB-2	5.0 to 6.3	5	1.3		85	120	5	2	1	3.3	600	5.8	12.0	0.131	600	0.61	0.43	NonLiq	12.0	1.95		0.29	1.2
LB-2	6.3 to 8.8	7.5	2.5		90	120	10	2	1	6.5	900	11.1	18.3	0.195	900	0.61	0.42	NonLiq	18.3	1.09		0.33	0.9
LB-2	8.8 to 12.5	10	3.8		80	120	31	2	1	20.2	1200	31.6	43.0	>Range	1200	0.61	0.42	NonLiq	43.0	0.10		0.04	0.5
LB-2	12.5 to 17.5	15	5.0		<u>46</u>	120	19	2	1	12.4	1800	15.8	24.0	0.273	1800	0.60	0.42	NonLiq	24.0	0.68		0.41	0.5
LB-2	17.5 to 22.5	20	5.0		25	120	43	1	1.3	55.9	2400	69.3	81.6	>Range	2400	0.59	0.41	NonLiq	81.6	0.05		0.03	0.1
LB-2	22.5 to 27.0	25	4.5		25	120	77	2	1	50.1	3000	55.5	66.2	>Range	3000	0.59	0.41	NonLiq	66.2	0.10		0.05	0.1

APPENDIX D

EARTHWORK AND GRADING GUIDE SPECIFICATIONS

LEIGHTON CONSULTING, INC.

GENERAL EARTHWORK AND GRADING SPECIFICATIONS FOR ROUGH GRADING

		Table of Contents	
<u>Secti</u>	on		Page
1.0	GEN	VERAL	1
	1.1	Intent	1
	1.2	The Geotechnical Consultant of Record	1
	1.3	The Earthwork Contractor	2
2.0	PRE	PARATION OF AREAS TO BE FILLED	2
	2.1	Clearing and Grubbing	2
	2.2	Processing	3
	2.3	Overexcavation	3 3 3
	2.4	Benching	3
	2.5	Evaluation/Acceptance of Fill Areas	3
3.0	FILI	4	
	3.1	General	4
	3.2	Oversize	4
	3.3	Import	4
4.0	FILI	4	
	4.1	Fill Layers	4
	4.2	Fill Moisture Conditioning	4
	4.3	Compaction of Fill	5 5
	4.4	Compaction of Fill Slopes	5
	4.5	Compaction Testing	5
	4.6	Frequency of Compaction Testing	5
	4.7	Compaction Test Locations	5
5.0	SUB	BDRAIN INSTALLATION	6
6.0	EXC	CAVATION	6
7.0	TRE	ENCH BACKFILLS	6
	7.1	Safety	6
	7.2	Bedding and Backfill	6
	7.3	Lift Thickness	6
	7.4	Observation and Testing	6

1.0 <u>General</u>

- 1.1 <u>Intent</u>: These General Earthwork and Grading Specifications are for the grading and earthwork shown on the approved grading plan(s) and/or indicated in the geotechnical report(s). These Specifications are a part of the recommendations contained in the geotechnical report(s). In case of conflict, the specific recommendations in the geotechnical report shall supersede these more general Specifications. Observations of the earthwork by the project Geotechnical Consultant during the course of grading may result in new or revised recommendations that could supersede these specifications or the recommendations in the geotechnical report(s).
- 1.2 <u>The Geotechnical Consultant of Record</u>: Prior to commencement of work, the owner shall employ the Geotechnical Consultant of Record (Geotechnical Consultant). The Geotechnical Consultants shall be responsible for reviewing the approved geotechnical report(s) and accepting the adequacy of the preliminary geotechnical findings, conclusions, and recommendations prior to the commencement of the grading.

Prior to commencement of grading, the Geotechnical Consultant shall review the "work plan" prepared by the Earthwork Contractor (Contractor) and schedule sufficient personnel to perform the appropriate level of observation, mapping, and compaction testing.

During the grading and earthwork operations, the Geotechnical Consultant shall observe, map, and document the subsurface exposures to verify the geotechnical design assumptions. If the observed conditions are found to be significantly different than the interpreted assumptions during the design phase, the Geotechnical Consultant shall inform the owner, recommend appropriate changes in design to accommodate the observed conditions, and notify the review agency where required. Subsurface areas to be geotechnically observed, mapped, elevations recorded, and/or tested include natural ground after it has been cleared for receiving fill but before fill is placed, bottoms of all "remedial removal" areas, all key bottoms, and benches made on sloping ground to receive fill.

The Geotechnical Consultant shall observe the moisture-conditioning and processing of the subgrade and fill materials and perform relative compaction testing of fill to determine the attained level of compaction. The Geotechnical Consultant shall provide the test results to the owner and the Contractor on a routine and frequent basis.

LEIGHTON CONSULTING, INC. General Earthwork and Grading Specifications

1.3 <u>The Earthwork Contractor</u>: The Earthwork Contractor (Contractor) shall be qualified, experienced, and knowledgeable in earthwork logistics, preparation and processing of ground to receive fill, moisture-conditioning and processing of fill, and compacting fill. The Contractor shall review and accept the plans, geotechnical report(s), and these Specifications prior to commencement of grading. The

Contractor shall be solely responsible for performing the grading in accordance with the plans and specifications.

The Contractor shall prepare and submit to the owner and the Geotechnical Consultant a work plan that indicates the sequence of earthwork grading, the number of "spreads" of work and the estimated quantities of daily earthwork contemplated for the site prior to commencement of grading. The Contractor shall inform the owner and the Geotechnical Consultant of changes in work schedules and updates to the work plan at least 24 hours in advance of such changes so that appropriate observations and tests can be planned and accomplished. The Contractor shall not assume that the Geotechnical Consultant is aware of all grading operations.

The Contractor shall have the sole responsibility to provide adequate equipment and methods to accomplish the earthwork in accordance with the applicable grading codes and agency ordinances, these Specifications, and the recommendations in the approved geotechnical report(s) and grading plan(s). If, in the opinion of the Geotechnical Consultant, unsatisfactory conditions, such as unsuitable soil, improper moisture condition, inadequate compaction, insufficient buttress key size, adverse weather, etc., are resulting in a quality of work less than required in these specifications, the Geotechnical Consultant shall reject the work and may recommend to the owner that construction be stopped until the conditions are rectified.

2.0 <u>Preparation of Areas to be Filled</u>

2.1 <u>Clearing and Grubbing</u>: Vegetation, such as brush, grass, roots, and other deleterious material shall be sufficiently removed and properly disposed of in a method acceptable to the owner, governing agencies, and the Geotechnical Consultant.

The Geotechnical Consultant shall evaluate the extent of these removals depending on specific site conditions. Earth fill material shall not contain more than 1 percent of organic materials (by volume). No fill lift shall contain more than 5 percent of organic matter. Nesting of the organic materials shall not be allowed. If potentially hazardous materials are encountered, the Contractor shall stop work in the affected area, and a hazardous material specialist shall be informed immediately for proper evaluation and handling of these materials prior to continuing to work in that area.

As presently defined by the State of California, most refined petroleum products (gasoline, diesel fuel, motor oil, grease, coolant, etc.) have chemical constituents that are considered to be hazardous waste. As such, the indiscriminate dumping or spillage of these fluids onto the ground may constitute a misdemeanor, punishable by fines and/or imprisonment, and shall not be allowed.

- 2.2 <u>Processing</u>: Existing ground that has been declared satisfactory for support of fill by the Geotechnical Consultant shall be scarified to a minimum depth of 6 inches. Existing ground that is not satisfactory shall be overexcavated as specified in the following section. Scarification shall continue until soils are broken down and free of large clay lumps or clods and the working surface is reasonably uniform, flat, and free of uneven features that would inhibit uniform compaction.
- 2.3 <u>Overexcavation</u>: In addition to removals and overexcavations recommended in the approved geotechnical report(s) and the grading plan, soft, loose, dry, saturated, spongy, organic-rich, highly fractured or otherwise unsuitable ground shall be overexcavated to competent ground as evaluated by the Geotechnical Consultant during grading.
- 2.4 <u>Benching</u>: Where fills are to be placed on ground with slopes steeper than 5:1 (horizontal to vertical units), the ground shall be stepped or benched. Please see the Standard Details for a graphic illustration. The lowest bench or key shall be a minimum of 15 feet wide and at least 2 feet deep, into competent material as evaluated by the Geotechnical Consultant. Other benches shall be excavated a minimum height of 4 feet into competent material or as otherwise recommended by the Geotechnical Consultant. Fill placed on ground sloping flatter than 5:1 shall also be benched or otherwise overexcavated to provide a flat subgrade for the fill.
- 2.5 <u>Evaluation/Acceptance of Fill Areas</u>: All areas to receive fill, including removal and processed areas, key bottoms, and benches, shall be observed, mapped, elevations recorded, and/or tested prior to being accepted by the Geotechnical Consultant as suitable to receive fill. The Contractor shall obtain a written acceptance from the Geotechnical Consultant prior to fill placement. A licensed surveyor shall provide the survey control for determining elevations of processed areas, keys, and benches.

3.0 <u>Fill Material</u>

- 3.1 <u>General</u>: Material to be used as fill shall be essentially free of organic matter and other deleterious substances evaluated and accepted by the Geotechnical Consultant prior to placement. Soils of poor quality, such as those with unacceptable gradation, high expansion potential, or low strength shall be placed in areas acceptable to the Geotechnical Consultant or mixed with other soils to achieve satisfactory fill material.
- 3.2 <u>Oversize</u>: Oversize material defined as rock, or other irreducible material with a maximum dimension greater than 8 inches, shall not be buried or placed in fill unless location, materials, and placement methods are specifically accepted by the Geotechnical Consultant. Placement operations shall be such that nesting of oversized material does not occur and such that oversize material is completely surrounded by compacted or densified fill. Oversize material shall not be placed within 10 vertical feet of finish grade or within 2 feet of future utilities or underground construction.
- 3.3 <u>Import</u>: If importing of fill material is required for grading, proposed import material shall meet the requirements of Section 3.1. The potential import source shall be given to the Geotechnical Consultant at least 48 hours (2 working days) before importing begins so that its suitability can be determined and appropriate tests performed.

4.0 Fill Placement and Compaction

- 4.1 <u>Fill Layers</u>: Approved fill material shall be placed in areas prepared to receive fill (per Section 3.0) in near-horizontal layers not exceeding 8 inches in loose thickness. The Geotechnical Consultant may accept thicker layers if testing indicates the grading procedures can adequately compact the thicker layers. Each layer shall be spread evenly and mixed thoroughly to attain relative uniformity of material and moisture throughout.
- 4.2 <u>Fill Moisture Conditioning</u>: Fill soils shall be watered, dried back, blended, and/or mixed, as necessary to attain a relatively uniform moisture content at or slightly over optimum. Maximum density and optimum soil moisture content tests shall be performed in accordance with the American Society of Testing and Materials (ASTM Test Method D1557-91).

- 4.3 <u>Compaction of Fill</u>: After each layer has been moisture-conditioned, mixed, and evenly spread, it shall be uniformly compacted to not less than 90 percent of maximum dry density (ASTM Test Method D1557-91). Compaction equipment shall be adequately sized and be either specifically designed for soil compaction or of proven reliability to efficiently achieve the specified level of compaction with uniformity.
- 4.4 <u>Compaction of Fill Slopes</u>: In addition to normal compaction procedures specified above, compaction of slopes shall be accomplished by backrolling of slopes with sheepsfoot rollers at increments of 3 to 4 feet in fill elevation, or by other methods producing satisfactory results acceptable to the Geotechnical Consultant. Upon completion of grading, relative compaction of the fill, out to the slope face, shall be at least 90 percent of maximum density per ASTM Test Method D1557-91.
- 4.5 <u>Compaction Testing</u>: Field tests for moisture content and relative compaction of the fill soils shall be performed by the Geotechnical Consultant. Location and frequency of tests shall be at the Consultant's discretion based on field conditions encountered. Compaction test locations will not necessarily be selected on a random basis. Test locations shall be selected to verify adequacy of compaction levels in areas that are judged to be prone to inadequate compaction (such as close to slope faces and at the fill/bedrock benches).
- 4.6 <u>Frequency of Compaction Testing</u>: Tests shall be taken at intervals not exceeding 2 feet in vertical rise and/or 1,000 cubic yards of compacted fill soils embankment. In addition, as a guideline, at least one test shall be taken on slope faces for each 5,000 square feet of slope face and/or each 10 feet of vertical height of slope. The Contractor shall assure that fill construction is such that the testing schedule can be accomplished by the Geotechnical Consultant. The Contractor shall stop or slow down the earthwork construction if these minimum standards are not met.
- 4.7 <u>Compaction Test Locations</u>: The Geotechnical Consultant shall document the approximate elevation and horizontal coordinates of each test location. The Contractor shall coordinate with the project surveyor to assure that sufficient grade stakes are established so that the Geotechnical Consultant can determine the test locations with sufficient accuracy. At a minimum, two grade stakes within a horizontal distance of 100 feet and vertically less than 5 feet apart from potential test locations shall be provided.

5.0 Subdrain Installation

Subdrain systems shall be installed in accordance with the approved geotechnical report(s), the grading plan, and the Standard Details. The Geotechnical Consultant may recommend additional subdrains and/or changes in subdrain extent, location, grade, or material depending on conditions encountered during grading. All subdrains shall be surveyed by a land surveyor/civil engineer for line and grade after installation and prior to burial. Sufficient time should be allowed by the Contractor for these surveys.

6.0 <u>Excavation</u>

Excavations, as well as over-excavation for remedial purposes, shall be evaluated by the Geotechnical Consultant during grading. Remedial removal depths shown on geotechnical plans are estimates only. The actual extent of removal shall be determined by the Geotechnical Consultant based on the field evaluation of exposed conditions during grading. Where fill-over-cut slopes are to be graded, the cut portion of the slope shall be made, evaluated, and accepted by the Geotechnical Consultant prior to placement of materials for construction of the fill portion of the slope, unless otherwise recommended by the Geotechnical Consultant.

7.0 <u>Trench Backfills</u>

- 7.1 <u>Safety</u>: The Contractor shall follow all OHSA and Cal/OSHA requirements for safety of trench excavations.
- 7.2 <u>Bedding and Backfill</u>: All bedding and backfill of utility trenches shall be done in accordance with the applicable provisions of Standard Specifications of Public Works Construction. Bedding material shall have a Sand Equivalent greater than 30 (SE>30). The bedding shall be placed to 1 foot over the top of the conduit and densified by jetting. Backfill shall be placed and densified to a minimum of 90 percent of maximum from 1 foot above the top of the conduit to the surface.

The Geotechnical Consultant shall test the trench backfill for relative compaction. At least one test should be made for every 300 feet of trench and 2 feet of fill.

- 7.3 <u>Lift Thickness</u>: Lift thickness of trench backfill shall not exceed those allowed in the Standard Specifications of Public Works Construction unless the Contractor can demonstrate to the Geotechnical Consultant that the fill lift can be compacted to the minimum relative compaction by his alternative equipment and method.
- 7.4 <u>Observation and Testing</u>: The jetting of the bedding around the conduits shall be observed by the Geotechnical Consultant.

APPENDIX E

CGS NOTE 48 CHECKLIST WITH REFERENCES TO THIS REPORT

California Geological Survey - Note 48

Checklist for the Review of Engineering Geology and Seismology Reports for California Public Schools, Hospitals, and Essential Services Buildings October 2013

GEOLOGICAL SURVEY Note 48 is used by the California Geological Survey (CGS) to review the geology, seismology, and geologic hazards evaluated in reports that are prepared under California Code of Regulations (CCR), Title 24, California Building Code. CCR Title 24 applies to California Public Schools, Hospitals, Skilled Nursing Facilities, and Essential Services Buildings. The Building Official for public schools is the Division of the State Architect (DSA). Hospitals and Skilled Nursing Facilities in California are under the jurisdiction of the Office of Statewide Health Planning & Development (OSHPD). The California Geological Survey serves under contract with these two state agencies.

Project Name: OSHPD or DSA File #: N/A Date Reviewed: Location: Reviewed By: California Certified Engineering Geologist #:

	Checklist Item or Topic Within Consulting Report	Section of this Report Addressed in
NA :	= not applicable NR = not addressed by consultant and therefore not reviewed at this time	Addressed III
	Project Location	
1.	Site Location Map, Street Address, County Name: Correctly plot site on a 7½-minute USGS quadrangle base-map.	Figure 1, Cover letter
2.	Plot Plan with Exploration Data and Building Footprint: One boring or exploration shaft per 5000 ft ² , with minimum of two for any one building. Exploratory trench locations.	Figure 2; Sec 1.2
3.	Site Coordinates (Latitude & Longitude):	Sec 2.5.2
		· · ·

Engineering Geology/Site Characterization

4.	Regional Geology and Regional Fault Maps: Concise page-sized illustrations with site plotted.	Figure 3; Figure 5
5.	Geologic Map of Site: Detailed (large-scale) geologic map with proper symbols and geologic legend.	Figure 3
6.	Subsurface Geology: Engineering geologic description summarized from boreholes or trench logs. Summarize ground water conditions.	Sec. 2.3; 2.4
7.	Geologic Cross Sections: Two or more detailed geologic sections with pertinent foundations and site grading.	Figure 4a; Figure 4b
8.	Active Faulting & Coseismic Deformation Across Site: Show proposed structures in relation to Alquist-Priolo Earthquake Fault Zones and/or any potential fault rupture hazard identified from the Safety Element of the local agency (city or county); show location of fault investigation trenches; 50-foot setbacks perpendicular from fault plane and proposed building footprints.	Sec. 2.5.1
9.	Geologic Hazard Zones (Liquefaction & Landslides): (<i>If applicable</i>) Show proposed structures in relation to CGS official map showing zones of required investigation for liquefaction and landslide, and/or any pertinent geologic hazard map from the Safety Element of the local agency (city or county).	Sec. 2.6
10.	Geotechnical Testing of Representative Samples: Broad suite of appropriate geotechnical tests.	Appendix A, Appendix B
11.	Consideration of Geology in Geotechnical Engineering Recommendations: Discuss engineering geologic aspects of excavation/grading/fill activities, foundation and support of structures. Include geologic and geotechnical inspections and problems anticipated during grading. Special design and construction provisions for bearing capacity failure and/or footings or foundations founded on weak or expansive soils. Consideration of seismic compression of fills; cut/fill differential settlement.	Sec. 3.2; 3.3

Seismology & Calculation of Earthquake Ground Motion

12.	Evaluation of Historical Seismicity: Prepare a short description of how historical earthquakes have affected the site.	Sec. 2.5.3; Figure 5
13.	Classify the Geologic Subgrade (Site Class): ASCE 7, Chapter 20.	Sec. 2.5.2
14.	General Procedure Ground Motion Analysis: Follows CBC §1613A.5. Report	Sec. 2.5.2, 3.5
	parameters S_s , S_1 , S_{DS} and S_{D1} . Recommended method for establishing map values found at: http://earthquake.usgs.gov/designmaps/us/application.php.	
15.	Seismic Design Category: Report if S1 > 0.75	Sec. 2.5.2
16.	Site-Specific Ground Motion Analysis: (<i>If applicable</i>) Required for sites where Seismic Design Category is E or F (CBC §1616A.1.3), and where required by ASCE 7 §11.47. See requirements in CBC §1803A.6.2. CGS suggests a table showing (a) 2% -in-50-years probabilistic spectrum, (b) risk coefficients if using ASCE 7 §21.2.1, Method 1), (c) probabilistic MCE _R , (d) 84% deterministic spectrum, (e) deterministic lower limit, (f) site-specific MCE _R (ASCE 7 §21.2.3), (g) 80% of map-based General Response Spectrum, (h) design response spectrum (ASCE 7 §21.3). Also	Sec. 2.5.2

NA =	Checklist Item or Topic Within Consulting Report not applicable NR = not addressed by consultant and therefore not reviewed at this time	Section of this Report Addressed in	-
		Sec. 2.5.2	_
18.	Time Histories of Earthquake Ground Motion: (<i>If applicable</i>) Identify target spectra (MCE or design); justify selected earthquake records; scale to target to meet ASCE 7 §16.1.3 or §17.3 and CBC §1616A.1.32; and show initial and scaled time histories and response spectra.	NA	1
	Liquefaction/Seismic Settlement Analysis		
19.	Geologic Setting for Occurrence of Liquefaction: Perform screening analysis to identify where the following conditions apply: depth of highest historical ground water surface <50 ft. low-density, non-plastic alluvium, typically <i>SPT</i> (<i>N</i> ₁) ₆₀ <30.	Sec. 2.4; 2.6.1	
20.	Seismic Settlement Calculations: (<i>If applicable</i>) Evaluate both saturated and unsaturated layers of the entire soil column; based on several detailed geologic cross sections. Provide calculations (no estimates) including all input parameters. Evaluate liquefaction using highest historical ground water elevation. Evaluate using PGA _M (CBC §1803A.5.12), and calculate liquefaction settlement for each layer where FS<1.3 (CGS SP117A).	Sec. 2.6.2	_
21.	Other Liquefaction Effects (If applicable) Bearing capacity failure and/or lateral spread	Sec. 2.6.1	-
22.	Mitigation Options for Liquefaction: (<i>If applicable</i>) Discuss effectiveness of options to mitigate liquefaction effects. Acceptance criteria for ground-improvement schemes.	Sec. 2.6.1	
	Slope Stability Analysis		
23.	Geologic Setting for Occurrence of Landslides: Characterize the potential for landsliding both on and off-site affecting proposed project.	Sec. 2.7	
24.	Determination of Static And Dynamic Strength Parameters: (<i>If applicable</i>) Conduct appropriate laboratory tests to determine material strength for both static and dynamic conditions.	Sec. 2.7	
25.	Determination of Pseudo-Static Coefficient (K_{eq}): (<i>If applicable</i>) Recommended procedure available from <u>http://www.conservation.ca.gov/cgs/shzp/webdocs/Documents/sp117.pdf</u> . Recommend using design-level ground motion based on geometric mean and without risk coefficient (ie, (PGA _M)/1.5), or discuss with CGS.	Sec. 2.7	
26.	Identify Critical Slip Surfaces for Static and Dynamic Analyses: (<i>If applicable</i>) Failure surfaces should be modeled to include existing slip surfaces, discontinuities, geologic structure and stratigraphy; include appropriate ground water conditions.	Sec. 2.7	
27.	Dynamic Site Conditions: (<i>If applicable</i>) Site response analysis and topographic effects should be considered, if appropriate.	Sec. 2.7	
28.	Mitigation Options for Landsliding/Other Slope Failure: (<i>If applicable</i>) Discuss effectiveness of options to mitigate landsliding/slope failure effects. Acceptance criteria for ground-improvement schemes.	Sec. 2.7	
	Other Geologic Hazards or Adverse Site Conditions se exceptional geologic hazards do not occur statewide; however, they may be pertinent to a particular si ditions exist relevant information should be communicated to the design team.	te. Where these	
-	Expansive Soils	Sec. 2.3.2, 3.4	_
30.		Sec. 2.3.3, 2.3.4	-
31.	Conditional Geologic Assessment: Including but not limited to - A. Hazardous materials methane gas, hydrogen-sulfide gas, tar seeps; B. Volcanic eruption; C. Flooding Riverine (FEMA FIRMs or local zoning for 100-year flood); see CBC §1612A. Also consider alluvial fan and dam inundation. Is the site elevated or protected from hazard; D. Tsunami and seiche inundation; E. Radon-222 gas; F. Naturally occurring asbestos in geologic formations associated with serpentine; refer to CGS SP 124; G. Hydrocollapse of alluvial fan soils due to anthropic use of water; H. Regional	Sec. 2.3.1 (hydrocollapse), 2.6.3 (seiches/tsunamis), 2.8 (flooding/dam inundation), 2.9 (others)	

	subsidence; I. Clays and cyclic softening.		
	Report Documentation		
32.	Geology, Seismology, and Geotechnical References	References	
33.	Certified Engineering Geologist: (CBC §1803A.1)	Cover Letter	
34.	Registered Geotechnical Engineer: (CBC §1803A.1)	Cover Letter	

